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The reconstruction of the exit pupil function of an optical system can basically be carried out by collecting intensity data in the focal
region from a certain number of defocused image planes. In this paper we present the first results of such a reconstruction operation
for optical systems with a high numerical aperture using a point source in the object plane. The main feature of our approach is the
use of the extended Nijboer-Zernike diffraction analysis that has been modified to incorporate vector diffraction effects. The quality of the
optical system is expressed by means of a set of complex Zernike coefficients that describe the phase and transmission variation in the
exit pupil of the imaging system. The ’vector’ method will be compared to the more common scalar diffraction analysis. We also analyse
the practical limits of the vector retrieval process regarding the maximum allowed aberration and the noise of the intensity data. The
sensitivity of the method with respect to parameter settings (state of polarisation and value of numerical aperture) is also examined. [DOI:
10.2971/jeos.2006.06004]
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1 I n t r o d u c t i o n

The quality assessment of an optical imaging system can be
carried out in several ways. Impulse response measurement
is a straightforward method where the intensity pattern in fo-
cus is detected in the presence of a point source in the object
plane. Frequency-based methods rely on grating structures in
the object plane and the measurement of the image contrast as
a function of spatial frequency. In both cases, intensity mea-
surements provide a quality measure of the system (impulse
response, frequency transfer) but no direct access to the aber-
ration function of the imaging system. For a characterisation
or a ’repair’ action of the imaging system, the aberration func-
tion is of chief importance because it produces a direct un-
derstanding of the nature of the defects in the imaging sys-
tem. The big advantage of interferometric methods is that they
allow a direct evaluation of the wavefront shape in the exit
pupil [1]. Unfortunately, interferometry is also a rather elab-
orate method for lens quality measurement. Its implementa-
tion in practical situations can be cumbersome, among oth-
ers because of the lack of adequate coherent sources at the
wavelength of interest, extreme sensitivity to vibrations, etc.
For that reason, methods have been developed to improve the
reconstruction of the exit pupil aberration function from in-
tensity measurement in the focal plane (inversion methods;
[2, 3, 4] for an overview of these, see Ref. [5]). A first step
has been to simultaneously study the intensity distribution
in the focal plane and in the exit pupil. Another possibility

is to measure the through-focus behaviour of the intensity of
the image of a point source. The complex pupil function is
then obtained by a numerical matching procedure between
the measured intensity and the forward calculated intensity
pattern obtained in a continuously improving cycle of up-
dates. In practice, the numerical burden of these methods can
be high and the unique final match is not always obtained. A
twofold improvement has been presented in some recent pub-
lications of the present authors by introducing the following
refinements:

• representation of the exit pupil function of the opti-
cal system by means of a Zernike polynomial expan-
sion with corresponding complex coefficients. Such a
Zernike expansion is capable of representing rather
complicated pupil functions with a moderate number
of coefficients.

• representation of the complex amplitude in the focal re-
gion based on an analytic (truncated) Bessel series ex-
pansion related to the Zernike expansion of the exit
pupil function (extended Nijboer-Zernike theory); the
complex amplitude can be obtained for substantially
large values of the defocus parameter f in the expo-
nential exp{+i f ρ2} (or a comparable expression at high
NA) that occurs in the diffraction integrals [6, 7, 8].
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FIG. 1 Schematic drawing of a high-numerical-aperture optical system (NA=sinα). The

incident wavefrontWinc, coming from an infinitely distant point source, is planar and

passes the entrance pupil and the optical system on its way to the image space. The

exit pupil sphere is centred on the point of intersection of the optical axis with the

nominal image plane (dashed line). Intensity samples are taken in several defocused

image planes (drawn line) to reconstruct the complex pupil function (amplitude and

phase) on the exit pupil sphere.

In this paper we will use the basic scheme for aberration re-
construction that has been developed in Ref. [9] for imag-
ing systems with a relatively low numerical aperture. This
scheme has been further developed to correctly include de-
focus effects at high numerical aperture [10]. The feasibility
to include vector diffraction effects in the extended Nijboer-
Zernike analysis has been demonstrated both for the forward
calculation [11] and for the retrieval process [12]. With these
extensions, a complete framework is available to retrieve aber-
rations (and birefringence effects) in high-NA systems. In Sec-
tion 2 of this paper, we briefly recall the theoretical framework
that was presented in Refs. [11,12] and we apply this material
in Section 3 to some examples of aberrated point-spread func-
tions. In this section we also develop insight into the size of the
aberrations that can be handled by our method and the influ-
ence of noise on the retrieval process. The section also contains
some examples that illustrate the sensitivity of the method for
incorrect parameter settings such as the state of polarisation
and the numerical aperture value of the lens. Section 4 con-
cludes the paper with a description of the applicability of the
extended Nijboer-Zernike retrieval method.

2 E X T E N D E D N I J B O E R - Z E R N I K E
T H E O R Y O F V E C T O R D I F F R A C -
T I O N A N D R E T R I E V A L

In this section we briefly recall the expressions for the Carte-
sian electric field vectors in the focal region of a high-NA
imaging system in the case of a point source object, Figure 1.
Assuming quasi-monochromatic radiation, the field in the en-
trance pupil is described by a coherent superposition of two
orthogonally polarised linear states of polarisation according
to E = (a, b) where a and b generally are complex numbers.
The influence of the (non-perfect) high-NA optical system is
the introduction of wavefront deformation and transmission
changes, on top of an intrinsic amplitude distribution on the
exit pupil sphere that is different for each Cartesian field com-
ponent. Moreover, we observe the so-called radiometric effect.
The various amplitude distributions for each field component
are described in the basic paper by Richards and Wolf for an
ideal optical system; the field components in the focal region

are found by calculating three basic integrals, named I0, I1
and I2 [13]. The behaviour of an aberrated optical system is
described by an expansion of the complex lens transmission
function in terms of Zernike polynomials with complex co-
efficients that are supposed to be identical for each polarisa-
tion state. We suppose that each vector component of the elec-
tric field in the exit pupil has to be multiplied by the complex
pupil transmission function

P(ρ, θ) = ∑
n,m

βm
n R|m|

n (ρ) exp (imθ), (1)

where the β’s are the Zernike coefficients of the expansion and
the index m with |m| ≤ n takes on positive and negative val-
ues to describe the cosine- and sine- dependencies in P(ρ, θ).
In all practical applications we suppose that β0

0 is the lead-
ing term; this will be the case for optical systems that are not
too far away from the diffraction limit. Using the extended
Nijboer-Zernike theory, the complex field vectors in the fo-
cal region can now be calculated and with reference to the
aberration-free case, we now have modified integrals Vm

n,−2,
Vm

n,−1, Vm
n,0, Vm

n,+1, Vm
n,+2 with the indices (n, m) pertaining to

the Zernike polynomial expansion on the exit pupil function.
The extended Nijboer-Zernike theory allows a semi-analytical
evaluation of each of these integrals with sub-indices rang-
ing through {−2, ..., 2} for each index combination (n, m), see
Ref. [11]. The linear superposition of the two orthogonal po-
larisation components in the x- and y-direction with complex
weights a and b in the entrance pupil leads to a mixing in
the high-NA focal region. The expression for the electric field
components in the focal region for x-polarisation reads

Ex(r, φ, f ) = −iγs2
0 exp

[
−i f
u0

]
∑
n,m

imβm
n,x exp [imφ]× Vm

n,0 + s2
0
2 Vm

n,2 exp [2iφ] + s2
0
2 Vm

n,−2 exp [−2iφ]

− is2
0

2 Vm
n,2 exp [2iφ] + is2

0
2 Vm

n,−2 exp [−2iφ]
−is0Vm

n,1 exp [iφ] + is0Vm
n,−1 exp [−iφ]

 , (2)

and a comparable expression for the field components for y-
polarisation in the entrance pupil is given by

Ey(r, φ, f ) = −iγs2
0 exp

[
−i f
u0

]
∑
n,m

imβm
n,y exp [imφ]× − is2

0
2 Vm

n,2 exp [2iφ] + is2
0

2 Vm
n,−2 exp [−2iφ]

Vm
n,0 −

s2
0
2 Vm

n,2 exp [2iφ]− s2
0
2 Vm

n,−2 exp [−2iφ]
−s0Vm

n,1 exp [iφ]− s0Vm
n,−1 exp [−iφ]

 . (3)

The functions Vm
n,j that depend on the normalised radial co-

ordinate r and the defocus parameter f are given by (j =
−2,−1, 0, 1, 2)

Vm
n,j(r, f ) =

∫ 1

0
ρ|j|

(
1 +

√
1− s2

0ρ2
)−|j|+1

(1− s2
0ρ2)1/4

×

exp
[

i f
u0

(
1−

√
1− s2

0ρ2
)]

R|m|
n (ρ)Jm+j(2πrρ)ρdρ , (4)

with series expansion expressions available to obtain quick
and accurate values of the integral above [12].
The total field in the focal region is now given by

E(r, φ, f ) = −iγs2
0 exp

[
−i f
u0

]
∑
n,m

imβm
n exp [imφ]×
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

aVm
n,0 + s2

0
2

{
(a − ib)Vm

n,2 exp [2iφ]

+(a + ib)Vm
n,−2 exp [−2iφ]

}
bVm

n,0 + s2
0
2

{
(−ia − b)Vm

n,2 exp [2iφ]

+(ia − b)Vm
n,−2 exp [−2iφ]

}
s0

{
(−ia − b)Vm

n,1 exp [iφ] + (ia − b)Vm
n,−1 exp [−iφ]

}


(5)

in which the weighting factors a and b appear explicitly. In
this expression the parameter f is the defocus parameter and
s0 stands for the numerical aperture in image space. The ex-
pressions for the constants γ and u0 can be found in [12].

2 . 1 T h e e x p r e s s i o n f o r t h e e n e r g y
d e n s i t y a n d i t s F o u r i e r c o m -
p o n e n t s

The energy density in the focal region is proportional to |E|2.
After some rearrangement and tedious manipulation [12], the
expression for the energy density of an aberrated high-NA
imaging system can be written

〈we(r, φ, f )〉 =
ε0n2

r s4
0

4

[
G0,0(β, β) + s2

0

{ (
|a|2 − |b|2

)
×

[<{G0,2(β, β)}+<{G0,−2(β, β)}]− 2<(ab∗)×

[={G0,2(β, β)} − ={G0,−2(β, β)}] +
s2

0
2

{
[1− 2=(ab∗)]×

G2,2(β, β) + [1 + 2=(ab∗)] G−2,−2(β, β)
}

+ [1− 2=(ab∗)]×

G1,1(β, β) + [1 + 2=(ab∗)] G−1,−1(β, β)− 2
(
|a|2 − |b|2

)
×

<{G1,−1(β, β)}+ 4<(ab∗)= {G1,−1(β, β)}
}]

. (6)

where we have intentionally left out the influence of spatially
varying birefringence of the imaging system.
In the following we will use the property that, for our high-
quality imaging systems, β0

0 is the dominant coefficient and
we can linearise the general expression for Gk,l according to

Gk,l(β, β)} = β0
0 exp{i(k − l)φ}∑

ν
∑
µ

{
β

µ∗
ν Ψµ∗

ν;k,l(r, f )×

exp(−iµφ) + (1− ενµ)β
µ
ν Ψµ

ν;l,k(r, f ) exp(+iµφ)
}

,(7)

where ενµ is unity for ν = µ = 0 and zero for all other values
and where we also introduced the shorthand notation

Ψµ
ν;k,l(r, f ) = (+i)µV0∗

0,k(r, f )Vµ
ν,l(r, f ) . (8)

2 . 2 A b e r r a t i o n r e t r i e v a l s c h e m e

The retrieval scheme for obtaining the complex pupil function
is based on a Fourier analysis of the measured and the analyt-
ically proposed intensity data. The Fourier decomposition is
carried out with respect to the harmonics in the azimuthal de-
pendence of the through-focus intensity distribution. To this
goal we evaluate

Ψm
an(r, f ) =

1
2π

∫ +π

−π
〈we(r, φ, f )〉 exp(imφ)dφ , (9)

for the analytically calculated distribution. A comparable op-
eration is performed on the measured intensity data, yielding

functions Ψm(r, f ).
With the aid of the expression given in Appendix A of [12]

we arrive at the following expression for the Ψm
an-function de-

rived from the analytically calculated intensity distribution of
Eq.(6)

Ψm
an(r, f ) =

β0
0

2 ∑
ν

{
βm∗

ν (2− εν,m)

[
Ψm∗

ν;0,0 + s2
0 ×{(

Ψm∗
ν;1,1 + Ψm∗

ν;−1,−1
)
+

s2
0
2

(
Ψm∗

ν;2,2 + Ψm∗
ν;−2,−2

)
− 2=(ab∗)×[ (

Ψm∗
ν;1,1 − Ψm∗

ν;−1,−1
)
+

s2
0
2

(
Ψm∗

ν;2,2 − Ψm∗
ν;−2,−2

)]}]

+βm
ν (2− εν,m)

[
Ψ−m

ν;0,0 + s2
0

{(
Ψ−m

ν;1,1 + Ψ−m
ν;−1,−1

)
+

s2
0
2

(
Ψ−m

ν;2,2 + Ψ−m
ν;−2,−2

)
− 2=(ab∗)×[(

Ψ−m
ν;1,1 − Ψ−m

ν;−1,−1

)
+

s2
0
2

(
Ψ−m

ν;2,2 − Ψ−m
ν;−2,−2

)]}]
+β

(m−2)∗
ν

[(
|a|2 − |b|2

)
+ 2i<(ab∗)

]
×

s2
0

{
Ψ(m−2)∗

ν;0,2 + (1− εν,m−2)
[
Ψ(m−2)∗

ν;−2,0 − 2Ψ(m−2)∗
ν;−1,+1

]}
+β

(m+2)∗
ν

[(
|a|2 − |b|2

)
− 2i<(ab∗)

]
×

s2
0

{
(1− εν,m+2) Ψ(m+2)∗

ν;0,2 + Ψ(m+2)∗
ν;0,−2 − 2Ψ(m+2)∗

ν;+1,−1

}
+β

(−m−2)
ν

[(
|a|2 − |b|2

)
− 2i<(ab∗)

]
×

s2
0

{
Ψ(−m−2)

ν;0,2 + (1− εν,m+2)
[
Ψ(−m−2)

ν;−2,0 − 2Ψ(−m−2)
ν;−1,+1

]}
+β

(−m+2)
ν

[(
|a|2 − |b|2

)
+ 2i<(ab∗)

]
×

s2
0

{
(1− εν,m−2) Ψ(−m+2)

ν;0,2 + Ψ(−m+2)
ν;0,−2 − 2Ψ(−m+2)

ν;+1,−1

} }
. (10)

Note that the expression above is not exact but applies to the
linearised approximation for the Gk,l-functions. The equations
to be solved now read

Ψm(r, f ) ≈ Ψm
an(r, f ) , (11)

for each m-value and they can be merged into one large sys-
tem of linearised equations. The practical solution procedure
consists of taking inner products on both sides with the func-
tions Ψm

n;k,l(r, f ) and to solve this new system of equations in-
stead of finding a solution that provides an optimum match
for each (r, f ) combination. The inner product above is de-
fined by

(Ψ, Φ) =
∫ R

0

∫ +F

−F
Ψ(r, f )Φ∗(r, f )rdrd f , (12)

where the integration limits are determined by the axial and
lateral range of the collected intensity data.

3 R E T R I E V A L E X A M P L E S U S -
I N G N I J B O E R - Z E R N I K E V E C -
T O R D I F F R A C T I O N T H E O R Y

In this section we will first present an example that shows
the inadequacy of a retrieval method based on scalar diffrac-
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tion theory when dealing with high-NA imaging systems. Sec-
ondly, we will show the ranges of aberration and transmission
defects that can be handled by the linearised system of equa-
tions given above. A wider range of retrieved values can be re-
alised once we use the so-called predictor-corrector extension
when solving the linearised equations. Subsequently, the error
is evaluated that is introduced in the retrieval process when
system parameters, such as the numerical aperture and inci-
dent polarisation, are not exactly known. Finally, we present
a simulated retrieval example performed in such a way that it
closely resembles the treatment of experimental data.

3 . 1 R e t r i e v a l o f a h i g h - N A s y s t e m
a s s u m i n g s c a l a r c o n d i t i o n s

In order to show the necessity of treating the full vectorial
case when performing retrieval upon systems of high NA, we
present the following simulation. A through-focus intensity
distribution (containing five axially displaced through-focus
images, f = −2,−1, 0, 1, 2 units in dimensionless axial coordi-
nates) is calculated for an aberration-free optical system hav-
ing an NA of 0.95 that is illuminated by purely x-polarised
light. We use the forward-calculation scheme embodied by
Eqs.(2-5). Thereupon, the high-NA data set acquired through
this operation, is analysed using a scalar version of the ENZ-
retrieval scheme. This gives rise to the set of retrieved β-
coefficients that can be found in the right column of Table 1.

Input Retrieved
β0

0 1.000 1.038
β0

2 0.000 −0.593
β−2

2 0.000 −0.466
β2

2 0.000 −0.466

TABLE 1 Comparison between the initial and the retrieved β-coefficients when retriev-

ing a simulated aberration-free intensity distribution (NA = 0.95, x-polarisation)

using the scalar ENZ-retrieval scheme.

FIG. 2 In the top left graph, the in-focus ( f = 0) intensities on the positive x-

and y-axes (blue and red line, respectively) are plotted. In the right top graph

the difference between the aberration-free intensity distribution (NA = 0.95, x-

polarisation) and its scalar fit is displayed. In the second row the same information is

presented for a position out of focus ( f = −2).

The fit imposed by this limited set of β-coefficients is remark-
ably good as can be derived from Figure 2. Nevertheless,

on comparing the β-coefficients obtained through the scalar
retrieval operation with the actual β’s (aberration-free case)
used for the simulation, we see poor correspondence. We ob-
serve that, scalar ENZ-theory can fit high-NA intensity distri-
butions, but the β-coefficients resulting from this approach no
longer have a direct physical relevance. Scalar ENZ-retrieval
needs to introduce a strongly amplitude-deformed pupil func-
tion in order to describe the high-NA and vectorial effect that
are not included in the scalar model. Note that the strong
amplitude deformation even includes a region in the pupil
where the amplitude is negative (see Figure 3). This effectively
means that this region should be subject to a phase shift of π.

The above example shows that the β-coefficients that are
found when applying scalar theory to intensity distributions
governed by the vectorial regime, do not have direct physi-
cal relevance and no longer give a correct description of the
system under consideration. If we want to retrieve the physi-
cally relevant β-coefficients for a high-NA optical system it is
therefore mandatory to treat the full vectorial case. The high-
NA ENZ-retrieval formalism was introduced in Section 2 and
we will examine some of its characteristics in the subsequent
sections.

FIG. 3 Strongly deformed pupil function resulting from the scalar ENZ-retrieval process.

The strong deformations are needed to cope with the high-NA and vectorial effect that

are not included in scalar theory. The left part shows the modulus of the amplitude.

Because the amplitude deformation should even include some regions of negative

amplitude, parts of the pupil are effected by a phase shift of π (white regions right

figure).

3 . 2 A c c u r a c y o f t h e h i g h - N A E N Z -
r e t r i e v a l s c h e m e

When applying the high-NA ENZ-retrieval scheme, the re-
trieved β-coefficients are generally not exact. Only when re-
trieval is performed upon a system that is aberration-free
(which effectively means we simulate a system described by
only one β-coefficient, β0

0 = 1), the β-coefficients obtained will
be exact. In all other cases, when one or more aberrations are
present in the system (described by additional β-coefficients),
an error in the retrieved β-coefficients is present. This error
originates from the linearision applied when deriving Eq. (10).

In order to obtain an indication of the magnitude of the error
present in the retrieved β-coefficients the following simula-
tions are performed. Starting from a perfect (aberration-free)
system, represented by a single β-coefficient, β0

0 = 1, we intro-
duce one additional non-zero β-coefficient (β2

2 6= 0). Next, this

06004- 4
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pair of β-coefficients is used to simulate a through-focus in-
tensity distribution that serves as input for the ENZ-retrieval
operation. The ENZ-retrieval process will now generate an
estimate for this pair of β-coefficients describing the system.
These estimates, which we shall denote as β’, are not exact and
include a certain error. The above process is repeated for ever
increasing sizes of β2

2, which leads to ever increasing sizes of
the error present in β2

2’. The results can be found in Figure 4,
where we have plotted the maximum error in the retrieved es-
timates for the β-coefficients versus the magnitude of β2

2 used
in the simulation.

10−6 10−5 10−4 10−3 10−2 10−1 100
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Simulated β2
2 value

M
ax

im
um

 E
rr

or

FIG. 4 Relation between the absolute size of β2
2 and the maximum error present in

the retrieved β-coefficients, for an otherwise perfect optical system (x-polarisation,

NA= 0.95).

Figure 4 indicates a quadratic relation between the maximum
observed error in the β-coefficients and the input value for
β2

2. This is as expected, as they are exactly those terms, de-
pendent on (β)2, that we omit when applying the linearised
expression for Gk,l (Eq.(7)). Because of this relation, ENZ-
retrieval is very accurate for well-corrected optical systems
(β ≤ 10−1). On the other hand, if we have a system influenced
by larger aberrations (β of the order of 1), the errors present
in the retrieved β-coefficients will be of the same order, which
means that the quality of the ENZ-retrieval will be very poor.
Fortunately, the ENZ-formalism provides an elegant correc-
tion scheme that improves retrieval results and makes the re-
trieved β-coefficients converge to their exact values. This cor-
rection scheme, known as the ”predictor-corrector” method,
will be treated in somewhat more depth below.

3 . 3 P r e d i c t o r - c o r r e c t o r : i m p r o v i n g
r e t r i e v a l q u a l i t y

As already stated above, basic ENZ-retrieval is not exact and
this becomes problematic for systems containing medium-to-
large aberration. This was also encountered when scalar ENZ-
retrieval was treated. In order to improve scalar retrieval re-
sults, a so-called predictor-corrector iteration scheme was pro-
posed and thoroughly tested in Ref. [14]. We now propose an
equivalent iterative procedure for the high-NA case, which
is formulated in Appendix A. This predictor-corrector proce-
dure is based on predicting the error introduced by the lin-
earision and correcting the intensity distribution for this error.

This operation will improve the retrieval quality and, when
applied in an iterative manner, will make that retrieval results,
obtained from simulated intensity data, converge to their ex-
act values.

5 10 15 20 25 30 35 40

10−15

10−10

10−5

100

Number of iterative cycles →

|E
rro

r| 
→

FIG. 5 A plot of the residual errors remaining in the retrieved β-values versus the num-

ber of iterative steps taken in the predictor-corrector procedure. The colours pertain

to various aberration terms that were either initially present or that were erroneously

detected at the start of the iterative retrieval process. The end value is determined by

machine precision.

In Figure 5 results for high-NA ENZ-retrieval with the
predictor-corrector procedure are shown for an optical system
subject to astigmatism in the x-direction (β0

0 = 1, β2
2 = β−2

2 =
0.5i, NA= 0.95, x-polarisation). One can clearly observe the
steady decrease of the error present in the retrieval result for
an increased number of iterations. For synthetic data, as used
in this example, the error eventually goes down to machine
precision of the calculation software used (MatLab). Note that
accuracies, customary for practical applications, are reached
within less than 10 cycles.

For real experimental data, when numerous inaccuracies
(such as noise) are inevitable, the attainable precision will be
limited. Still in that case, the residual errors in the retrieved
β-values, obtained through the predictor-corrector procedure,
will be small and of the same (or lower) order of magnitude
than the noise present in the data. We have observed such a
performance for aberration values that can be as large as twice
the diffraction-limit, e.g. up to 0.15 λ rms wavefront devia-
tion. In Subsection 3.5 a retrieval example is treated for data
obtained from a simulated general optical system in which
noise is present. But first we will investigate the effect on
the retrieval quality of system parameters that are not exactly
known.

3 . 4 U n c e r t a i n t y i n s y s t e m p a r a m e -
t e r s

One of the possible complications encountered when going
from simulated data to experimental data obtained from a real
optical system, is that certain system parameters are not ex-
actly known. In this subsection we will investigate the effect
on the retrieval quality when incorrect values for the NA and
the orientation of the linear state of polarisation are assumed.
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To this end, we simulate a through-focus intensity distribution
according to the β-values found in Table 2. Next, the

Input value
β0

0 1.0000
β0

2 0.0200i
β−1

3 0.0500i
β1

3 0.0500i
β−2

2 0.0100i
β2

2 0.0100i

TABLE 2 Set of β-coefficients describing the field in the exit pupil of the optical system

(NA = 0.95) under consideration.

system defined in Table 2 is subjected to ENZ-retrieval while
assuming a range of different values for the numerical aper-
ture. During this process the error in several β-coefficients is
monitored and the results can be found in Figure 6. A strik-
ing observation is that the residual error in all β-coefficients is
minimal for the correct value of the numerical aperture. This
not only makes it possible to tune the retrieval process to the
exact value for the numerical aperture, but also suggests a pro-
cedure that can accurately determine the numerical aperture
of an unknown system.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

NA →

Er
ro

r →

FIG. 6 The error present in some relevant β-coefficients when retrieving the system

defined in Table 2 while assuming different values for the NA. The colours point to

typical aberration coefficients; the residual errors for all aberrations are smallest at

the correct NA value.

Secondly, an equivalent simulation was performed for sev-
eral supposed polarisation states while the numerical aper-
ture is known. Starting from an exclusively x-polarised illumi-
nation state the parameters a and b are varied while making
sure that (|a|2 + |b|2) = 1 (a and b real) because of normal-
isation purposes. This leads to a rotation of the polarisation
state to a certain angle relative to the x-axis. This presumed
polarisation state, different from the actual state of the sys-
tem leads to an additional error present in the retrieved set of
β-coefficients. The results of these simulations can be found
in Figure 7, where the error present in the set of retrieved β-
coefficients is plotted versus the angle between the supposed
and actual polarisation direction. From Figure 7 one observes
that it is also important to have accurate knowledge about the

polarisation state of the system under consideration in order
to obtain good retrieval quality.

The example above illustrates an interesting relation between
the possible inaccuracy in the polarisation state and the error
in the retrieved β-coefficient. For an optical system of which
the polarisation state is approximately known an equivalent
operation, as was used for generation of Figure 7, can be used
to determine the polarisation state with great accuracy. For the
special case that one has no knowledge whatsoever about the
state of polarisation, the above procedure is no longer appli-
cable. This is caused by the fact that the predictor-corrector
procedure is not valid for very large deviations from the real
state of polarisation. In this case, basic ENZ-retrieval can be
used to obtain an approximate polarisation state after which
the predictor-corrector method can be applied to determine
the state of polarisation with great accuracy.

−50 −40 −30 −20 −10 0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

Angle(degrees) →

Er
ro

r i
n 

β 
→

FIG. 7 The error present in some selected retrieved β-coefficients (solid-lines) for dif-

ferent angles of deviation relative to the actual polarisation state of the system under

consideration (in this case pure x-polarisation). In addition a measure for the total

error, defined as
[
∑ (βerror)2

]1/2
, is plotted (dotted line).

3 . 5 H i g h - N A E N Z - r e t r i e v a l e x a m p l e

At the time this publication was written, no experimental data
was available that could serve as input for the high-NA re-
trieval operation described in this paper. Therefore the ulti-
mate test, retrieval of the aberrations for a real-world high-NA
optical system, was not possible. As the best available alterna-
tive we present the following numerical experiment.

A through-focus intensity distribution, corresponding to the
exit-pupil field defined in Table 3, is simulated (top row Figure
8). Next, in order to simulate an experiment, we add noise to
this distribution. The result can be found in the second row of
Figure 8. Now this distribution serves as the input of the ENZ-
retrieval process while assuming that the NA and polarisation
state of the system are known with great accuracy, meaning
we will not have to bother about the problems discussed in the
preceding subsection. Results for basic ENZ-retrieval (a single
retrieval cycle) can be found in the third row and the result
obtained through the predictor-corrector method, which uses
the full power of the ENZ-formalism, is shown in the bottom
row of Figure 8.
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SNR = ∞ SNR = 10
Input coeff. Lin. retr. Pr.-Corr. Lin. retr. Pr.-Corr.
β0

0 1.0 1.1294 1.0000 1.1291 1.0004
β−1

1 0.0 0.1002 0.0000 0.0934 0.0050
+i0.5 +i0.4278 +i0.5000 +i0.4277 +i0.4933

β1
1 0.0 0.0997 0.0000 0.0973 −0.0124

+i0.5 +i0.4576 +i0.5000 +i0.4598 +i0.5068
β−1

3 0.5 0.4545 0.5000 0.4401 0.4688
+i0.0 +i0.0028 +i0.0000 +i0.0144 +i0.0099

β1
3 −0.5 −0.4330 −0.5000 −0.4339 −0.5041

+i0.0 −i0.0008 +i0.0000 −i0.0174 −i0.0385
β0

2 0.0 0.0382 0.0000 0.0220 −0.0264
+i0.0 +i0.0000 +i0.0000 −i0.0176 −i0.0270

β−2
2 0.0 0.1138 0.0000 0.1276 0.0112

+i0.5 +i0.5813 +i0.5000 +i0.5306 +i0.4327
β2

2 0.0 0.1113 0.0000 0.1122 0.0060
+i0.5 +i0.3039 +i0.5000 +i0.3095 +i0.5137

β−3
3 −0.5 −0.3269 −0.5000 −0.3821 −0.5468

+i0.0 −i0.0843 +i0.0000 −i0.0641 +i0.0253
β3

3 0.5 0.5534 0.5000 0.5631 0.5139
+i0.0 +i0.0869 +i0.0000 +i0.0535 −i0.0296

TABLE 3 Set of β-coefficients describing the field in the exit pupil of the optical system

(NA = 0.95) treated in Subsection 3.5. The input data were a noise-free intensity

distribution and a distribution with a highest signal-to-noise ratio of 10 at best-focus;

both distributions are synthetic data obtained from a forward-calculation. The retrieved

coefficients have been obtained by linearised retrieval and by repeated application of

the predictor-corrector scheme.

FIG. 8 The through-focus intensity distribution for the system (NA = 0.95, x-

polarisation) defined in Table 3. The upper row is the actual distribution, the second

row is what results after adding noise with a SNR of 10, the third row is the distribu-

tion defined by the first β-estimates and the last row is the distribution resulting after

the predictor-corrector procedure. Note that all images have been scaled according to

their maximum value in order to show maximum detail. The SNR-value of 10 applies

to the in-focus distribution; from the pictures in the second row it is clear that the

SNR-value is much lower for the out-of-focus intensity distributions.

4 C O N C L U D I N G R E M A R K S

In this paper we have shown the feasibility of doing aberra-
tion retrieval according to the full vector diffraction version
of the Extended Nijboer-Zernike theory. It is shown how to
construct a linear system of equations that, upon solving, re-
sults in an unambiguous set of Zernike coefficients describ-
ing the optical system under consideration. At the time this
paper was written, no experimental high-NA through-focus
intensity data was available, therefore numerous test on sim-
ulated data were performed and presented in Section 3. It be-
came obvious that it is mandatory to treat the complex vecto-
rial case, rather than the far more simple scalar case, in order
to acquire meaningful retrieval results. In addition, we dis-
cussed the fact that basic ENZ-retrieval is generally not exact
and that this becomes problematic for medium-to-large aber-
rations. Recognising this inadequacy of basic ENZ-retrieval,
we inserted the so-called predictor-corrector procedure which
significantly improves the possible retrieval range and qual-
ity. Looking forward to experimental high-NA data sets to be-
come available we investigated some possible complications
that are inextricably connected to dealing with experimental
data. There we found that it is very important to have accurate
knowledge about the numerical aperture and state of polarisa-
tion of the system under consideration in order to assure good
retrieval quality and stability of the predictor-corrector proce-
dure. Finally, we concluded this paper with a simulation that
illustrates the full power and versatility of the ENZ-retrieval
scheme.

A T H E P R E D I C T O R - C O R R E C T O R
P R O C E D U R E

The predictor-corrector procedure has been described and
tested in simulation in Ref. [14], Section 4, for the case of rel-
atively low-NA optical systems that allow a scalar treatment
of the image formation. The extension to the high-NA vecto-
rial case is rather straightforward, the basic principles being
identical, and so we give here only a brief outline.

We assume that a measured through-focus intensity distribu-
tion Im is available that is to be represented in the form

I ∝ |~E|2 =
(

β0
0

)2
χ0,0

0,0 + 2∑
n,m

′
β0

0βm∗
n χm,0

n,0

+∑
n,m

′

∑
n′ ,m′

′
βm

n βm′∗
n′ χm,m′

n,n′ . (A.1)

Here χ0,0
0,0 and χm,0

n,0 pertain to the dominant aberration-free
auto-term and the dominant cross-terms that arise in accor-
dance with Eqs.(6-8), and χm,m′

n,n′ is an elaborate term, that in-

volves products Vm
n;jV

m′∗
n′ ;j′ , pertaining to small cross terms. The

′-signs in Eq.(A.1) indicate that the terms with n = m = 0 and
n′ = m′ = 0 should be deleted. In the basic retrieval scheme,
we choose the β’s in the small cross-term deleted version(

β0
0

)2
χ0,0

0,0 + 2∑
n,m

′
β0

0βm∗
n χm,0

n,0 (A.2)

of Eq.(A.1) such that the match between Eq.(A.2) and Im is
maximal; this is done in accordance with Eqs.(10-12). The re-
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sulting β’s are denoted by βm
n (1) and form a first estimate of

the β’s in Eq.(A.1) that serve to represent Im.

In the basic retrieval scheme matching is done with the small
cross-terms deleted. Now an estimate βm

n (1) has been found,
the small cross-term expression in Eq.(A.1) can be estimated
as

∑
n,m

′

∑
n′ ,m′

′
βm

n (1)βm′∗
n′ (1)χm,m′

n,n′ (A.3)

in which the unknown βm
n are replaced by their first esti-

nates βm
n (1). A direct computation of Eq.(A.3) is, however,

quite involved since the χm,m′

n,n′ are so complicated, and so
we proceed in a different manner. We compute, using the
forward scheme for computing the field components Ei in
Eqs.(2-3), the through-focus intensity point-spread function
I(1) = |~E(1)|2 of the optical system with pupil function P(1)
of Eq.(1) where we have set βm

n = βm
n (1) throughout. Then, in

accordance with Eq.(A.1), the quantity Eq.(A.3) is given by

I(1)−
(

β0
0(1)

)2
χ0,0

0,0 − 2∑
n,m

′
β0

0βm∗
n χm,0

n,0 ] , (A.4)

and the computation of this quantity is feasible in a very ac-
ceptable time.

Having available now Eq.(A.3), we perform basic retrieval
with the Im replaced by

Im − ∑
n,m

′

∑
n′ ,m′

′
βm

n (1)βm′∗
n′ (1)χm,m′

n,n′ . (A.5)

Hence, the β’s in Eq.(A.2) now maximize the match between
Eq.(A.2) and Eq.(A.5) to yield a new collection of coefficients
βm

n (2). This whole process of adjusting Im is repeated until
convergence is reached. Wen convergence is reached we have
obtained coeffecients βm

n (∞) that satisfy

Im − ∑
n,m

′

∑
n′ ,m′

′
βm

n (∞)βm′∗
n′ (∞)χm,m′

n,n′ =

(
β0

0(∞)
)2

χ0,0
0,0 − 2∑

n,m

′
β0

0(∞)βm∗
n (∞)χm,0

n,0 . (A.6)

By bringing the double summation at the left-hand side of
Eq.(A.6) to the right-hand side of Eq.(A.6), we see that we
have managed to represent Im in the form Eq.(A.1) using
βm

n = βm
n (∞).
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