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1 I n t r o d u c t i o n

Nonlinear process of optical spontaneous parametric down-
conversion is a fundamental quantum process useful for veri-
fication of various quantum phenomena and for their applica-
tions [1]-[3]. The theory of this process has been well worked
out, especially when pumping beams are strong. In recent ex-
periments [4, 5] (and references therein) joint distributions of
photon pairs have been measured or reconstructed from mea-
sured experimental data. The corresponding description de-
rived from the first principles was proposed in [6].

In this connection we can mention the earlier experimental
and theoretical investigations of quantum statistics of photon
pairs from spontaneous parametric down-conversion, as dis-
cussed from other points of view, such as detection process
[7]-[9], “more intense” beams [10], correlations and quantum
interference [11, 12] non classical nature [13], spatial proper-
ties [14, 15] and polarisation properties [16, 17]. It is possible to
create moiré fringe effects in spatial correlations of twin pho-
tons [18], using two down-converters one can transfer quan-
tum correlations [19] and twin photons were used to generate
entangled states [20].

Recently various experiments were performed with process
of stimulated down-conversion [21]-[25] including optical mi-
cro structure fibres [26]. In this paper we briefly review the
description of the spontaneous down-conversion in regimes
of weak photon beams [6] and of the stimulated down-
conversion [27] giving multi mode formulae for joint gen-
erating function, joint photon-number distribution and joint
integrated-intensity probability distribution in signal and
idler modes for the multi mode process, provided that the
pumping beam is strong and coherent.

2 Q U A N T U M S T A T I S T I C A L D E -
S C R I P T I O N

When using the standard methods of quantum optics based
on the coherent-state technique, we can adopt results for the
description of two-mode non degenerate optical parametric
process with strong classical coherent pumping, as reviewed
in [28] (section 10.1.2), including losses and noise. Assum-
ing equivalent pairs of photons arising in the process, the s-
ordered 2M-mode joint generating function can be obtained
in the spirit of the Mandel-Rice formula in the form [27]

Gs(λ1, λ2) =
1

DM
s

exp
[
−λ1|ξ1|2 + λ2|ξ2|2 + λ1λ2Ls

Ds

]
, (1)

where λ1 and λ2 are parameters of the generating function,
Ds = 1 + λ1B1s + λ2B2s + λ1λ2Ks, Ks = B1sB2s − |D12|2 =
(B1 + B2)(1 − s)/2M + K + (1 − s)2/4 = 〈n〉spont(1 −
s)/2M + K + (1− s)2/4, which is just the determinant of the
Fourier transformation K = B1B2 − |D12|2 for the s-ordering,
B1,2s = B1,2 + (1 − s)/2 = 〈n〉spont/2 + (1 − s)/2, the mean
number of spontaneous photons in the field 〈n〉spont equals
in the pure case without losses and noise 2 sinh2(gt); in this
ideal case K = −B = −B1 = −B2 (the negative value of this
determinant reflects that the Glauber-Sudarshan quasi distri-
bution never exists in the interaction), |D12|2 = B(B + 1)
and so Ks = −s〈n〉spont/2M + (1 − s)2/4) in this case. Fur-
ther the time-dependent intensity of the whole signal and
idler field is Ij = |ξ j(t)|2 = M|ζ j(t)|2, j = 1, 2 and Ls =
|ξ1|2B2s + |ξ2|2B1s − (ξ1ξ2D∗

12 + c.c.), ξ j =
√

Mζ j. In the inter-
action picture we have for the time-dependent complex am-
plitudes

ζ1(t) = exp(−γt/2)[ζ1(0)u(t) + iζ∗2(0)v(t) exp(iφ)], (2)

ζ2(t) = exp(−γt/2)[ζ2(0)u(t) + iζ∗1(0)v(t) exp(iφ)].

Here γ is the damping constant, ζ1,2(0) are initial signal
and idler complex stimulating amplitudes, φ is the pump-
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ing phase, u(t) = cosh(gt), v(t) = sinh(gt), g and t be-
ing the coupling constant proportional to quadratic suscep-
tibility including the real pumping amplitude and interac-
tion time, respectively. Further in the ideal case the quantum
noise functions are B1 = 〈∆â†

1∆â1〉 = B2 = 〈∆â†
2∆â2〉 =

B = |v|2 = sinh2(gt), D12 = 〈∆â1∆â2〉 = i exp(iφ)uv =
(i/2) sinh(2gt) exp(iφ). The time-dependent noise functions
B1 = B2 = B and D12 including losses and noise were given
in [28] (equations (10.14a), [29] and their simplified form can
be written in the interaction picture in the following way [30]:

B =
1
2
(a1 + a3)− 1, D12 =

i
2

exp(iφ)(a3 − a1), (3)

K = a1a3 − a1 − a3 + 1,

a1 =
κ1

κ5
[1− exp(−κ5t)] + exp(−κ5t),

a3 =
κ3

κ6
[1− exp(κ6t)] + exp(κ6t),

κ1,3 = g± γ(〈nd〉+ 1), κ5,6 = 2g± γ,

where 〈nd〉 is the mean number of reservoir oscillators in a
mode (for γ = 〈nd〉 = 0 we obtain the above values B =
sinh2(gt), D12 = (i/2) sinh(2gt) exp(iφ)). From these values
including damping and losses it can be verified that −Bs ≤ Ks
and in particular −B ≤ K for s = 1 (K + B ≥ 0, i.e. a quantum
Schwarz inequality B + B2 ≥ |D12|2 holds, giving noise com-
ponent in the joint photon-number distribution Eq.(7); this en-
sures its non-negativity) and the equality K = −B occurs in
the pure process without damping and losses only.

Hence we assume the flat spectrum of noise of photon pairs
as an approximation. The number M of degrees of freedom
of photon pairs is a free parameter assumed to be determined
from the second moments of experimental data. For signal or
idler modes (λ2 or λ1 equals zero) we have the standard su-
perposition of signal and noise [28] (Sec. 5.3) and for the spon-
taneous process the signal or idler modes are described by the
Mandel-Rice formula for the photon-number distribution and
by the Rayleigh (Gamma) distribution for the integrated in-
tensity.

For s = 1 in Eq.(1) we obtain the normal generating func-
tion for the joint photon-number distribution p(n1, n2), which
is derived through the derivatives around λ1 = λ2 = 1 in
the standard way. Putting λ1,2 → −is1,2 in terms of new
Fourier variables s1,2, the Fourier transforms with respect to
s1,2 provide the s-ordered joint integrated-intensity distribu-
tion Ps(W1, W2), W1 = |α1|2, W2 = |α2|2, α1,2 being the com-
plex amplitudes of the signal and idler fields, respectively. The
generating function Gs(λ, λ) is then appropriate for obtain-
ing quantities for the compound mode Eqs.(1,2), such as the s-
ordered moments for the whole field, the integrated-intensity
distribution Ps(W), W = W1 + W2 related to s-ordering for the
whole field, and if s = 1 the photon-number distribution p(n),
n = n1 + n2 and its factorial moments are obtained through
derivatives around λ = 1 and 0, respectively. However, all
these results were derived earlier (see review in [28], Sec. 10.2).

The corresponding first- and second-order moments are [27]

〈Wj〉s = MBjs + |ξ j|2, j = 1, 2, (4)

〈(∆Wj)2〉s = MB2
js + 2Bjs|ξ j|2, j = 1, 2,

〈∆W1∆W2〉s = M|D12|2 + (ξ1ξ2D∗
12 + c.c.).

These expressions make it possible to determine also the noise
functions Bj, |D12| and the number of degrees of freedom M
of photon pairs from experimental data [27].

When we put ζ1 = ζ2 = 0, we obtain the case of the spon-
taneous process, as discussed in [6]. In this case the joint
integrated-intensity distribution is obtained by means of the
Fourier transformation [6]

Pspont
s (W1, W2) =

1
Γ(M)

(
1

Ks

)M (K2
s W1W2

|D12|2

)(M−1)/2

(5)

× exp
[
− (B2sW1/B1s + W2)B1s

Ks

]
×IM−1

(
2
[
|D12|2W1W2

K2
s

]1/2)
, Ks > 0,

where IM is the modified Bessel function and

Pspont
s (W1, W2) ≈

(W1W2)(M−1)/2

πΓ(M)BM
1s

(6)

× exp
(
−W1 + W2

2B1s

)
sin A(W1 −W2)

W1 −W2
, Ks < 0,

A = (−KsB1s/B2s)−1/2. The corresponding joint photon-
number distribution is [6]

pspont(k, l) =
1

Γ(M)
(−K)l(B1 + K)k−l

(1 + B1 + B2 + K)k+M (7)

×
l

∑
r=max(0,l−k)

Γ(k + M + r)
r!(l − r)!(k− l + r)!

[(B1 + K)(B2 + K)]r

(−K)r(1 + B1 + B2 + K)r .

For the noise component B + K = 0 (B1 = B2 = B) we ob-
tain the diagonal Mandel-Rice formula for photon pairs. The
quality of the integrated-intensity distributions related to s-
ordering is determined by the determinant Ks [6]; Ks = 0 gives
a border between classical (Ks > 0, regular non-negative dis-
tributions) and quantum behaviour (Ks < 0, quasi distribu-
tions possessing negative values) and determines a relation
between physical quantities, because it must be Bs − |D12| =
B + (1 − s)/2 − |D12| = 0 (B1 = B2 = B) and consequently
we have for the threshold value of the ordering parameter
sth = 〈n〉spont/M + 1− 2|D12|. The quantum regime of oscil-
lations in Ps(W1, W2) [6] exhibiting phase-space interference
[31] occurring for Ks < 0 is just in coincidence with the quan-
tum region of non-existence of Ps(W) as a regular distribu-
tion (negative values) determined by Bs − |D12| < 0 (sub-
Poissonian photon-number distribution p(n) and its oscilla-
tions occur in correspondence to s = 1); in the opposite case
when Ks > 0 (Bs − |D12| > 0) the distribution Ps(W1, W2) is a
non-negative regular distribution and as well Ps(W) exists as
a regular non-negative distribution.

In principle one can expand the exponential function in the
joint generating function to obtain multiple-sum expressions
for the joint quantities through derivatives or Fourier transfor-
mation. However, they are cumbersome and impractical and
for a sufficiently accurate description of the experimental data
an approximation can be done. In this approximation we ne-
glect interference of noises in both the signal and idler modes
with the stimulated coherent components (Ls ≈ 0, Ds ≈ 1 in
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the exponential function in Eq.(1)), having [27]

Pstim
s (W1, W2) =

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞

1
DM

s
(8)

× exp[−is1(W1 − I1)− is2(W2 − I2)]ds1ds2

= Pspont
s (W1 − I1, W2 − I2), W1,2 ≥ I1,2,

which means that in this case all results discussed for the
spontaneous process in [6] are valid around the stimulating
intensity values I1, I2. One of the stimulating intensities can
be zero. The corresponding joint photon-number distribution
is [27]

pstim(k, l) =
k

∑
k′=0

l

∑
l′=0

pspont(k− k′, l − l′)
Ik′
1 Il′

2
k′!l′!

exp(−I1 − I2).

(9)
These approximations are in general exact in the first mo-
ments, more accurate than 1 % in the second moments, 3 %
in the third moments, 6 % in the fourth moments and 10 %
in the fifth moments. For experimental data these approxima-
tions are still more accurate, which is given by values of Ks
close to zero and by larger number of degrees of freedom M
related to the spontaneous process (so that in the generating
function (1) again Ls ≈ 0, Ds ≈ 1 in the exponential function
and DM

s ≈ (1 + λ1B1s + λ2B2s)M for Ks < 0; in the opposite
case the exact spontaneous joint distribution Eq.(5) is appro-
priate) [27]. If the stimulated components are quite dominant,
the joint photon statistics are Poissonian,

pstim(k, l) =
Ik
1

k!
exp(−I1)

Il
2

l!
exp(−I2). (10)

One can conclude in general that the most pronounced quan-
tum effects are exhibited in the spontaneous process whereas
the stimulated components mask them.

3 I L L U S T R A T I O N S A N D D I S C U S -
S I O N

We can provide some illustrations of the above results for the
stimulated process choosing the initial amplitudes |ζ1(0)| =
|ζ2(0)| = 1 under the initial phase condition φ1 + φ2 − φ =
−π/2 giving the maximum non classical effects, φ1,2 being the
phases of ζ1,2(0). In

FIG. 1 Joint integrated-intensity distribution for s = 0.3, gt = 0.6, M = 10, γ/g =

0.1, 〈nd〉 = 1, |ζ1(0)| = |ζ2(0)| = 1, φ1 + φ2 − φ = −π/2 (a) (top) and its cut

curves (b) (bottom).

Figure 1 we give the joint integrated-intensity distribution
and its cut curves based on Eqs.(5) and (8) for s = 0.3, gt =
0.6, M = 10, γ/g = 0.1, 〈nd〉 = 0.5 when Ks = 0.0680 > 0,
whereas in Figures 2 the same quantities are given for the
same values of the parameters but gt = 0.9 when Ks =
−0.0411 < 0, which are based on Eqs.(6) and (8). We see the
change of quality

FIG. 2 As in Figures 1 but for gt = 0.9.
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of the distribution from its regular non-negative behaviour
to its quantum oscillating behaviour with negative values. In
general with increasing gt the values of |Ks| increase and the
frequency of oscillations A decreases. In Figures 3 we give the
stimulated joint photon-number distribution Eq.(9) where (7)
has been used, together with its cut curves for the same val-
ues of parameters as in Figures 2 (s = 1 is appropriate). In the
pure case without losses and noise (K = −B), this distribution
is diagonal. This is also reached in the limit gt → ∞ provided
that the nonlinearity is stronger than damping (g > γ), be-
cause in this limit the influence of losses and noise relatively
successively decreases (see Eq.(3)) and also the argument of
the exponential function in Eq.(1) tends to zero in this case
under the above phase condition.

FIG. 3 Joint photon-number distribution for the same values of parameters as in Figures

2 (s = 1 is appropriate) (a) (top) and its cut curves (b) (bottom).

4 C O N C L U S I O N

In this paper we have reviewed a description of the quantum
statistical properties of the multi mode spontaneous and stim-
ulated processes of down-conversion. We have exhibited ex-
pressions for joint distributions of photon numbers and in-
tegrated intensities in signal and idler fields of multimode
parametric down-conversion, including the border between
classical and quantum behaviour. The description can be ap-
plied for time evolution of the corresponding statistical quan-
tities including losses, noise and stimulating fields or as a tool

based on the experimental data for determination of all rele-
vant physical quantities.
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