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Scanning effects in coherent fourier scatterometry
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Incoherent Fourier Scatterometry (IFS) is a successful tool for high accuracy nano-metrology. As this method uses only far field measure-
ments, it is very convenient from the point of view of industrial applications. A recent development is Coherent Fourier Scatterometry (CFS)
in which incoherent illumination is replaced by a coherent one. Through sensitivity analyses using rigorous electromagnetic simulations,
we show that the use of coherence and multiple scanning makes Coherent Fourier Scatterometry (CFS) more sensitive than Incoherent
Fourier Scatterometry (IFS). We also report that in Coherent Fourier Scatterometry it is possible to determine the position of the sample
with respect to the optical axis of the system to a precision dependent only on the experimental noise.
[DOI: http://dx.doi.org/10.2971/jeos.2012.12031]
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1 INTRODUCTION

Now-a-days, most semiconductor chips are designed to have
small feature sizes, typically tens of nanometers. With increas-
ing demand for more packing density, many innovative tech-
niques, such as the use of extreme ultraviolet wavelength, im-
mersion based optical system or their combinations, are be-
ing investigated to reach even lower size structures. How-
ever, fast and accurate quality control in volume production
photolithography has always been an issue to be taken care
of. Optical scatterometry has been one of the successful solu-
tions to this problem, providing a non-invasive in-situ mea-
surement with accuracy limited theoretically only by system
noise. There are several other reasons for scatterometry to be
one of the favoured methods in this problem. More about this
can be found in several publications, for example, in [1]–[3].

In this technique measured far field intensity pattern gener-
ated by the interaction of an incident field and a scatterer
is compared with simulated ones through rigorous analysis
of Maxwell’s equations. Generally, the final objective of this
comparison is to retrieve certain properties of the scatterer
by numerical optimization. Thus, scatterometry belongs to
the class of inverse problems of electromagnetism [4]. How-
ever, in the present work we narrow down the objective to
retrieve the shape of a one dimensional grating scatterer us-
ing focussed coherent optical illumination, termed as Coher-

ent Fourier Scatterometry (CFS), introduced in [5]. It is to be
noted that the pitch of the grating is assumed to be known a
priori and can be utilized to maximize sensitivity.

The working version of optical scatterometry commonly
known as Incoherent Fourier Scatterometry (IFS) consists
in illuminating the sample by spatially incoherent plane
wavefront onto the sample [6], mainly because unwanted
problems due to coherence, such as speckle etc., can be
avoided while sufficiently accurate measurements are still
possible. However, there are certain advantages if coherent
illumination is used, mainly, a gain in sensitivity. An added
feature in CFS is the ability of scanning the sample owing
to the fact that coherent scatterometry is sensitive to shift of
the object through a phase factor proportional to the shift
[5]. Scanning plays the main role in the aforementioned
gain in sensitivity. Secondly, using coherent illumination
one can retrieve the phase information together with the
intensity, without using any extra reference beam. Finally,
given that coherent scatterometry is sensitive to lateral shift
of the sample, the position of the object can also be retrieved
along with the required shape parameters. This may also
find some usefulness in various areas not directly related to
metrology, for example, in nanopositioning without using a
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reference beam [7]. Thus, in future, these added advantages
may outplay the disadvantages of coherence.

The paper is organized as follows. In the next section we show
a model for the typical grating we want to retrieve and we de-
fine our parameter vector, with and without considering the
position of the grating as unknown. In the third section we
introduce the relevant mathematical relations we need to per-
form a sensitivity analysis, followed by the fourth where we
present the results. Here, at first with explicit examples we
analyze the role of scanning and show how scanning helps to
achieve better sensitivity in CFS. Then we discuss more about
finding the position of the sample together with its shape.

2 EXPERIMENTAL CONDITIONS AND
DEFINITION OF THE GRATING VECTOR

Let us consider a simple experiment in which a one-
dimensional silicon grating having a profile of a trapezium
is illuminated by the focussed field of a diffraction lim-
ited objective with spatially coherent incoming wavefront.
When operating in reflection the same objective can be
used to collect the reflected wavefront forming a so called
epi-illumination arrangement (Figure 1(a)). Two polarizers,
not shown in the figure, can be placed in paths of incoming
and outgoing field. We will be considering ideal cases, i.e.,
a perfectly plane incident wavefront, absorption-free and
diffraction-limited objective lens performance and ideal
polarizers. Also, by coherent beam we mean complete
spatial coherence and for incoherent beam complete spatial
incoherence. The substrate and grating materials can have
complex refractive indices, whereas, generally the medium
surrounding the grating has real refractive index. In the plane
above the lens, when the linearly polarized electric field is
perpendicular to the groove (x in Figure 1(a)), we will refer to
it as X polarization and for the electric field along the groove
it will be Y polarization.

As mentioned before, the main difference between CFS and
IFS is the phase shift occurring in CFS as the grating is moved
by small amount ∆r = (∆x, ∆y, ∆z). A proof of this can be
found in [5] which can be rewritten in the following formula
for this phase shift for a two dimensional planar grating with
grating vector Λ = (Λx, Λy, 0)

R′lm = Rlm exp
[

i2π

(
l∆x
Λx

+
m∆y
Λy

)]
(1)

where R′lm is the diffraction amplitude for the l, mth order af-
ter shifting ∆r from its initial position Rlm. There is no change
when l = m = 0, i.e, for zero order. This means that coherent
scatterometry works differently than incoherent scatterome-
try only when at least one nonzero order is present. Now we
can define scanning in CFS as capture of several frames by
applying small lateral shifts of the grating in the direction of
its grating vector till the grating is displaced by the distance
of one pitch. For the present context of one dimensional grat-
ing as in Figure 1(a), Λy → ∞ and the scans are done along
X. A typical CFS measurement will consist of several frames
placed side by side, which, we call a superframe. This aspect

(a)

(b)

FIG. 1 The axis schematics (Figure 1(a)) and details of the grating profile at zero bias

(Figure 1(b))

of coherent scatterometry encourages us to determine the po-
sition of the grating with respect to the optical axis. This is
made through an additional parameter called bias.

In Figure 1(b), the parameters defining the shape of the grat-
ing are shown. height is the maximum height in the work
cycle, SWA are side walled angles (left is SWA1 and right
is SWA2) and MIDCD (MIDdle Critical Dimension) is the
width of the trapezium at half the height. Other choices are
also possible but nonetheless these make a sufficient set. The
possible experimental lateral misalignment is taken care by
bias, as mentioned before. The zero bias position is defined as
the situation when the center of one period (as shown in Fig-
ure 1(b)), coincides with the optical axis of the objective. Any
nonzero bias implies some lateral misalignment. The scans are
symmetrically distributed around the bias axis spanning the
length of one pitch. The separation between them, which de-
pends on the number of scanning positions we choose and the
actual value of the pitch, is called shift, corresponds to ∆x in
Eq. (1). If the number of scanning positions on one side of the
bias axis including the one on the axis is given by S, then, with
the configuration explained above we will have 2S − 1 scan
positions inside the pitch for a given S where the first and the
final one have identical far field for being exactly one period
away. This implies that we will have effectively 2S − 2 scan
positions. To be noted, in the same scheme, no scan implies
S = 1.

Taking all this into account, the vector defining
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the geometry of the grating was chosen to be
a = [height, swa1, swa2, midcd, bias]. For convenience, we
will also assume symmetric grating with swa1 = swa2.
This simplified assumption does not influence the gen-
eral outcomes and leads to the reduced grating vector
a = [height, swa, midcd, bias]. In an even simplistic case
the position of the grating is unimportant or known as
a priori information, we can further reduce the vector to
[height, swa, midcd], which should be the easiest one to
investigate.

3 MATHEMATICAL RALATIONS FOR
SENSITIVITY ANALYSIS

In order to establish a scheme for the comparison of CFS from
IFS, we have chosen to analyse the difference of sensitivities
of each method and make a comparison between them. Given
a merit function, the uncertainty matrix can be related to the
Hessian of the function, and then elements of inverse of this
matrix will correspond to the sensitivities of different param-
eters. This approach is used by many authors to analyse the
precision of critical dimension metrology, for example, in [8]
or in [9], one can find a brief or a detailed discussion respec-
tively.

Let a function fp ≡ f (xp, a) represent our model which trans-
forms the input field into output intensity by simulating the
reflection from the grating of the spot focussed by the objec-
tive on it. Referring to Figure 1(a), since waves coming from
different incident angles may be diffracted into the same out-
going angle, this function maps many input waves to one out-
put intensity value. f (xp, a) depends on pixel co-ordinate xp
and parameter vector a = (a1, a2, ...., aN)

1 when the incident
wave is planar. If a least square merit function is defined by

χ2 =
(2S−1)×M

∑
p=1

[ f m
p − fp

σp

]2

, (2)

where f m
p is the measured intensity, M is the total number of

pixels in a single fame, σp is the standard deviation of noise
at pixel p assuming a normal distribution and, as we already
know, one coherent superframe contains 2S− 1 frames . The
covariance matrix is defined by C = A−1, where elements of
A are given by the Hessian matrix

Ajk =
(2S−1)×M

∑
p=1

1
σ2

p

[
∂ fp

∂aj

∂ fp

∂ak

]
. (3)

C gives us the variances and covariances of the parameters.
We can find 3-sigma uncertainties from the diagonal elements
of C. The formula for uncertainty in parameter aj is

∆aj = 3
√
(2S− 1)MCjj (4)

The multiplication with number of pixels in a superframe is
to allow the results to be independent of the number of pix-
els used in a specific simulation. This is needed to make a

1To be noted that xp is a two dimensional vector as xp ⇒ (θp , φp), where θ

and φ are planar and conical incidence angles from pixel p. Here real integer
p ∈ [1, M] denotes each pixel of a M-pixel frame.

fair comparison between CFS and IFS owing to larger number
of data in CFS. Eq. (4) gives the 3-sigma uncertainty per unit
pixel per unit noise standard deviation for jth parameter. The
off-diagonal terms of C shows covariances between the pa-
rameters. To make the desired comparison between CFS and
IFS, we define coherent sensitivity gain csg

csgj =
∆aj,incoherent

∆aj,coherent
(5)

An important variable which determines the difference be-
tween CFS and IFS is introduced as overlap variable F defined
as

F =
λ

Λ NA
, (6)

where λ is the illuminating wavelength, NA is the numeri-
cal aperture and Λ is the pitch of the grating. This overlap
variable is important in coherent scatterometry as it takes into
account system (illumination wavelength and NA) and sam-
ple (pitch) factors together. We want to concentrate on mostly
the geometrical effects as F is varied, so it is preferable to vary
F by changing the pitch only. This is justified since pitch is
assumed to be known and we are free to adjust it to obtain
maximum sensitivity. We keep the wavelength of illumina-
tion constant allowing us to keep the same refractive index
throughout.

To fix the range, let us consider overlap variable varying from
0.7 to 2.2, since this range of F includes most interesting fea-
tures. For F > 2 there is no order other than zeroth which
is captured by the system, so, according to Eq. (1), no effect
of scanning can be seen in the far field. If this is the case,
then coherent and incoherent scatterometry gives the same far
field and the sensitivities of both processes should be identi-
cal. Thus, this region sets the lower limit for the pitch, at F = 2,
that is useful for obtaining the benefits of coherent scatterom-
etry and can be used as a check for consistency of the simula-
tions. The values of F such as 1 < F ≤ 2 is the region where
only zeroth and first orders are captured. The pupil starts to
get populated by two beam interferences and difference be-
tween coherent and incoherent far field starts to build up. In
a specific pixel, due to two-beam interference, there is some
probability that the resultant intensity is zero and so without
scanning this region shows some sharp sensitivity variations.
This can be made somewhat stable with scanning, as with the
additional phase in first diffracted order due to the shift, the
probability of nearly destructive interference at a given pixel
occurring in all non-redundant scans is lessened. By the same
logic there may be some cases where no scan can give bet-
ter csg for some parameter than experiments with more scans,
due to coincidental constructive interference in more pixels.
However, these are very special cases and general conclusions
cannot be drawn from them, and, in most cases they will dis-
appear or reappear in some random manner for a different
NA, shape of the grating or bias. In the region 0.67 < F ≤ 1
the second order starts to be captured and most of the pupil
is now the result of three-beam interference. The coherence of
light starts to play a strong role here and significant change
in the far field is expected, so also any effect due to scanning.
Further lowering of F will lead to even larger pitch and more
interferences. This is to be avoided as this calls for rapid in-
crease of numerical complexity and accordingly the compu-
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tational time, making the overall optimization required at the
final step of CFS, rather slow which is unacceptable in any
practical environment.

4 RESULTS AND SENSITIVITY ANALYSIS

In the remaining part of this section, we consider a specific
grating as our sample. This grating is assumed to be made of
silicon on a silicon substrate and the medium surrounding the
the grating is air. We will be using illumination wavelength of
633 nm, at which the complex refractive index of silicon of
3.882− 0.019i.

Regarding sensitivity analysis simulations, the derivatives in
Eq. (3) are computed by finite differences where the size of
the grids has been fixed to 0.1 nm and the angular grid is 0.1
degrees. The incident polarization is linear and can be X or Y,
where we assume no polarizer at the output.

We chose a typical shape of the grating defined by parameter
vector [height, swa, midcd] = [150, 90, 0.5] (in nm, degree and
fraction of pitch) where we analyze the sensitivity variation
with pitch assuming that the bias is known. Later we remove
this restriction. The height is chosen in the range as normally
used in scatterometric measurements and 90 degree SWA is
most commonly used for binary gratings. As the pitch is vary-
ing, the MIDCD is kept scaled to half of the pitch so that as
the pitch decreases the grating profile is not becoming very
small, and the process can still ’see’ the refractive index vari-
ation. The bias is kept at zero, i.e., the optical axis divides the
profile symmetrically as in Figure 1(b). The specific choice of
bias does influence the sensitivity when no scanning is done
but this influence becomes almost non existent with sufficient
scanning, as is shown later. The results were calculated us-
ing RCWA [10, 11] with number of positive Fourier modes
retained is 15, which has been tested to give sufficient con-
vergence in the the range of F as mentioned earlier for silicon
grating with 633 nm illumination and for both TE and TM po-
larization.

4.1 Sensit ivity Gain in Coherent Fourier
Scatterometry

Figure 2 shows the results for csg for height when no polarizer
at the output and the input is X polarized (top) or Y polarized
(bottom) for a numerical aperture of 0.4. The red line shows
csg for no scan (S = 1) and the blue line is for minimal scan
(S = 2) of two positions. As expected, csg starts to vary for
F ≤ 2. For no scan it oscillates till F is greater than 1, and starts
to show a steady increase with smaller F. It may be noted that
not only a more steady behaviour is observed when only one
more scan is added, but csg always stays greater than unity.
Thus we may conclude that coherent scanning in CFS is more
sensitive than IFS. However, the gain may be made larger and
more stable with more scanning, which is the next step to in-
vestigate.

Figure 3 shows how the csg for height is improved upon ad-
dition of more scans and how this effect of improvement is
dependent on the polarization of the incident wave. Clearly

(a)

(b)

FIG. 2 csg for height is plotted for no scan (red) and minimal scan (blue) for two input

polarization X (Figure 2(a)) and Y (Figure 2(b)) and no polarizer at the output. The

NA is 0.4.

(a)

(b)

FIG. 3 csg for height is plotted for minimal scan (blue), S = 3 (green) and S = 7

(brown) for two input polarization X (Figure 3(a)) and Y (Figure 3(b)) and no polarizer

at the output. The NA is 0.4.

addition of more scans improve the csg although naturally
there is an optimum number of scanning beyond which the
gain is marginal. Here a comparison between S = 3 and S = 7
reveals this optimum number to be S = 3, or in other words,
4 scans. However, this number should depend on overlap pa-
rameter because it should change as higher orders are being
captured. Also in this example the effect of scanning seems to
have a more dominant effect when the incident light is polar-
ized along X.

To show whether these conclusions are true for higher NA,
which is normally used for practical scatterometry applica-
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(a)

(b)

FIG. 4 csg for height is plotted for no scan (red), S = 3 (green), S = 4 (light blue)

and S = 7 (brown) for two input polarization X (Figure 4(a)) and Y (Figure 4(b)) and

no polarizer at the output. Note the change in the number of optimum scan positions,

more apparent for input polarization Y, as F becomes less than 1 and the second

order is captured. The NA is 0.9.

(a)

(b)

FIG. 5 csg for MIDCD is plotted for no scan (red) and S = 3 (green) for two input

polarization X (Figure 5(a)) and Y (Figure 5(b)) and no polarizer at the output. The

NA is 0.9.

tions, the relevant plot of csg for height is shown in Figure 4
for NA = 0.9. The basic nature of the plot is similar to the pre-
vious results involving smaller NA. With the introduction of
more scans, it can be noted that optimum number of scans is
changed from 4 (S = 3) to 6 (S = 4), which is clearly visible
for Y-polarization when F decreases below 1 and the second
order comes inside the aperture. This effect is absent for X-
polarization possibly due to smaller change in the far field for
this case. Thus for the whole range of pitch we are interested,

(a)

(b)

FIG. 6 csg for SWA is plotted for no scan (red) and S = 3 (green) for two input

polarization X (Figure 6(a)) and Y (Figure 6(b)) and no polarizer at the output. The

NA is 0.9.

FIG. 7 3 sigma uncertainty per unit pixel with σnoise = 1 × 10−4 for height is plotted

for no scan (Figure 7(a)) and S = 3 (Figure 7(b)) with input polarization X and no

polarizer at the output. In each plot sensitivities of different bias (0, 300 nm, 600 nm,

and 900 nm) is shown in different colour. The NA is 0.9. Note the difference of the

vertical axis as the scanning is introduced.

we can say 6 scans are optimum, though 4 will be sufficient
for most cases and can be considered optimum in practice.

The behaviour of other two shape parameters, namely SWA
and MIDCD, can also be seen to be of similar nature. To avoid
repetition we show only the results for no scan and S = 3, in
Figure 5 and 6 for MIDCD and SWA respectively.

In Figure 7 we show the 3-sigma uncertainty per pixel, as de-
fined in Eq. (4), for height with no scanning and 4 scans. The
results are for input polarization X. For simplicity and a more

12031- 5



J. Europ. Opt. Soc. Rap. Public. 7, 12031 (2012) S. Roy, et.al

(a) (b)

(c) (d)

FIG. 8 3 sigma uncertainty per unit pixel with σnoise = 1×10−4 for bias is plotted for no scan (red) and S = 3 (green) for two input polarization X (Figure 8(a) and Figure 8(b))

and Y (Figure 8(c) and Figure 8(d)) and no polarizer at the output. The top row is for bias = 0 and the bottom row is for bias = 900 nm. The NA is 0.9.

general approach, we assumed the standard deviation of the
noise to be independent of pixel position having a value of
σnoise = 1× 10−4 [12]. This level of noise is standard in IFS if
some noise reduction image processing is done on experimen-
tal data. This gives an uncertainty in height of about 0.2 nm
with scanning. From the values of the Y-axis in both plots it
can be seen that the uncertainties are lowered and stabilized
with scanning. This means that exact positioning of the sam-
ple is not important if sufficient scanning is done and a pos-
sible choice of F can be made without considering effects due
to specific position of the grating. Conversely, it indicates suf-
ficient scanning results in small correlation between bias with
shape parameters and an independent determination of bias
may be possible without retrieval of shape parameters.

To conclude this section, we may say that CFS provides better
sensitivity than IFS under identical circumstances. The spe-
cific gain is dependent on the number of scans, NA and pitch
and also on illumination wavelength and the grating material,
however, given a specific realization, the pitch can be chosen
to obtain a large csg.

4.2 Dependence on bias and its retr ieval

After establishing the gain in sensitivity in CFS compared to
IFS the next step would be to extend the usefulness of CFS to
take into account the additional parameter bias defining the
position of the sample with respect to optical axis of the sys-
tem. We should first check whether addition of this new pa-
rameter jeopardizes sensitivities of the shape parameters since
that was our primary goal and cannot be compromised. If this
is satisfied then we can check which level of uncertainty CFS
gives in determination of bias.

There is a difference in the definition of uncertainty of the bias.
Since zeroth order is invariant towards shift, the number of
pixels whose intensity is dependent on bias increases as the
F decreases, essentially being equal to the difference between

the total number of pixels and the pixels containing only ze-
roth order. If this is called Mint then Eq. (4) becomes

∆aj = 3
√
(2S− 1)MintCjj (7)

Unlike M, Mint is a function of F and goes to zero for F ≥ 2.
As F → 2−, these contributing pixels will start to be concen-
trated towards the edge of the aperture and are prone have
lower SNR. Thus it is beneficial to keep F smaller so that suf-
ficient samples exist with adequate SNR to allow for a practi-
cal determination of bias. In the simulation we avoid this case
and also oversample NA to avoid any error arising due to the
sharp reduction in number of data points.

To obtain the uncertainties in bias we may plot it for various
scans. As shown in Figure 8, the uncertainty ranges between
1 to 2 nm and is often about 0.5 nm. This is for a noise SD
of 1 × 10−4 as mentioned earlier. This, due to small correla-
tion of bias with other parameters, can be independently op-
timized with a reasonable a-priori knowledge of the grating
sample. We have taken two examples here at bias = 0 and
at bias = 900 nm. To be noted, in bias = 0 case and Y po-
larization, no scan performs better than the multiple scanning
for a large range of values of F. This is probably coincidental
as it appears specifically for that bias. Also, since bias is not
a shape parameter scanning may have a less dominant effect
to reduce the uncertainty in this case. Nonetheless, With this
level of uncertainty for positioning, CFS seems to be a good
and convenient tool for nano-positioning.

5 CONCLUSION

In this paper we showed that Coherent Optical Scanning
(CFS) as alternative and superior candidate in scatterometry
than Incoherent Optical Scatterometry (IFS). Through sensi-
tivity analysis we showed how scanning, which is at the heart
of CFS, can lead to larger sensitivity in determination of shape
parameters. This fact remains true for different cross sections
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and different NA of which we showed only two examples
here. There exists an optimum number of scan positions and
this number can be directly related to phase shifting interfer-
ometry if we consider the scanning to be an operation similar
to phase shifting of reference waves which requires at least
three shifts for complete knowledge of interfering fields. By
the same logic the number of scanning positions required in-
creases to 6 as F decreases below 1 and the second order is
captured, resulting in three-wave-interference in each pixel.
We also showed that with sufficient scanning it is possible to
reduce the correlation of bias and shape parameters and this
has two advantages, namely the choice of specific value of
overlap parameter F for which all the shape parameters have
sufficiently high sensitivity can be done regardless of the spe-
cific position of the grating, and, independent determination
of bias should be possible when shape parameters are not of
interest. Both of these are desirable to make CFS a convenient
and flexible tool. Finally, we showed that positioning of the
grating with respect to axis of the optical system is possible to
an accuracy of fraction of nanometers in CFS under standard
practical conditions of optical nano-metrology. With a noise
SD of σnoise = 1× 10−3, which is normally obtained without
strict noise control, a positional uncertainty of 5 nm and height
uncertainty of 2 nm should still be possible in CFS. Though we
restricted ourselves to one-dimensional lateral misalignments
because the grating in our example was one-dimensional, us-
ing Eq. (1), a two dimensional grating positioning should also
be possible.
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