Journal of the European Optical Society - Rapid publications, Vol 11 (2016)

Spectroscopic evidence of anthropogenic compounds extraction from polymers by fluorescent dissolved organic matter in natural water

M. Miranda, A. Trojzuck, D. Voss, S. Gassmann, O. Zielinski


FDOM is one of the most important carriers of anthropogenic compounds in natural waters. It can combine with environmental contaminants and polymers to form diverse chemical structures. To this end, here a microfluidic chip was designed for the analysis of these changes in fluorescent dissolved organic matter (FDOM) fingerprints due to thermal treatment and varying time intervals of exposure. Excitation Emission Matrix Spectroscopy (EEMS) approach was utilized to detect and identify the inherent compounds in sampled FDOM. Strong direct correlations were founded, Spearman rank correlation values (ρ = 0.85 at α = 0.1, n = 4) and linear correlation R² = 0.8359 were noted between thermal treatment pattern 2 and fluorescence intensity of samples. Materials, acrylic based glue and cyclic olefin copolymer (COC) polymer, used to design the microfluidic sensor were determined to possess unique spectral features in the ultraviolet to green spectrum using EEMS. The study therefore provides an insight on methods to identify contaminants in natural waters. This underlines the potential of optical sensors providing measurements at fast intervals, enabling environmental monitoring.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2016.16014]

Full Text: PDF

Citation Details

Cite this article


N. Nelson, and D. Siegel, ”The global distribution and dynamics of chromophoric dissolved organic matter,” Annu. Rev. Mar. Sci. 5, 447–476 (2013).

J. I. Hedges, ”Global biogeochemical cycles: progress and problems,” Mar. Chem. 39, 67–93 (1992).

N. Scully, W. Cooper, and L. Tranvik, ”Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter,” FEMS Microbiol. Ecol. 46, 353–357 (2003).

J. T. O. Kirk, Light & photosynthesis in aquatic ecosystems (Cambridge University Press, New York, 2011).

O. Zielinski, and J. Watson (eds.), Subsea optics and imaging (first edition, Woodhead Publishing limited, Cambridge, 2014).

R. Del Vecchio, and N.V. Blough, ”Influence of ultraviolet radiation on the chromophoric dissolved organic matter in natural waters,” in Environmental UV radiation: impact on ecosystems and human health and predictive models, F. Ghetti, G. Checcucci and J. F. Bornman, eds., 203–216, (Springer Netherlands, Dordrecht, 2006).

P. Coble, ”Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,”Mar. Chem. 51, 325–346 (1996).

P. Coble, ”Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Rev. 107, 402–418 (2007).

F. Jiang, F. S-C. Lee, X. Wang, and D. Dai, ”The application of Excitation /Emission Matrix spectroscopy combined with multivariate analysis for the characterization and source identification of dissolved organic matter in seawater of Bohai Sea, China,” Mar. Chem. 110, 109–119 (2008).

M.G. Villagarcia, O. Llinas, R. Reuter, M.J. Rueda, O. Zielinski, and J. Godoy, ”Distribution of gelbstoff fluorescence in the Northern Canary Box,” Deep-Sea Res. Pt. II 49, 3497–3511 (2002).

S. P. Garaba, D. Voß, and O. Zielinski, ”Physical, bio-optical state and correlations in North-Western European Shelf Seas,” Remote Sens. 6, 5042–5066 (2014).

O. Zielinski, D. Voß, B. Saworski, B. Fiedler, and A. Körtzinger, ”Computation of nitrate concentrations in turbid coastal waters using an in situ ultraviolet spectrophotometer,” J. Sea Res. 65, 456–460 (2011).

E. Boyle, N. Guerreiro, A. Thiallet, R. Del Vecchio, and N. Blough, ”Optical properties of humic substances and CDOM: relation to structure,” Environ. Sci. Technol. 43, 2262–2268 (2009).

J. R. Lakowicz, Principles of fluorescence spectroscopy (third edition, Springer US, New York, 2006).

C. Moore, A. Barnand, P. Fietzek, M. Lewis, H. Sosik, S. White, and O. Zielinski, ”Optical tools for ocean monitoring and research,” Ocean Sci. 5, 661–684 (2009).

F. Degryse, E. Smolders, and D. R. Parker, ”Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review,” Eur. J. Soil Sci. 60, 590–612, (2009).

S. Nardi, D. Pizzeghello, L. Bragazza, and R. Gerdol, ”Low- molecular weight organic acids and hormone-like activity of dissolved organic matter in two forest soils in N Italy,” J. Chem. Ecol. 29, 1549–1564 (2003).

E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, ”Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc.-Rapid. 8, 13069 (2013).

D. Said-Pullicino, G. Gigliott, and A. Vella, ”Environmental fate of triasulfuron in soils amended with municipal waste compost,” J. Environ. Qual. 33, 1743–1751 (2004).

P. Sánchez-Marín, J. Santos-Echeandía, M. Nieto-Cid, X. A. ÁlvarezSalgado, and R. Beiras, ”Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae,” Aquat. Toxicol. 96, 90–102 (2010).

F. Yang, M. Wang, and Z. Wang, ”Sorption behavior of 17 phthalic acid esters on three soils: effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study,” Chemosphere 93, 82–89 (2013).

J. M. Marín-Benito, C. D. Brown, E. Herrero-Hernández, M. Arienzo, M. J. Sánchez-Martín, and M. S. Rodríguez-Cruz, ”Use of raw or incubated organic wastes as amendments in reducing pesticide leaching through soil columns,” Sci. Total Environ. 463–464, 589–599 (2013).

R. Jaffé, K. Cawley, and Y. Yamashita, ”Applications of excitation emission matrix fluorescence with parallel factor analysis (EEMPARAFAC) in assessing environmental dynamics of natural dissolved organic matter (DOM),” in Aquatic environments: a review. Advances in the physicochemical characterization of dissolved organic matter: impact on natural and engineered systems, Fernando Rosario-Ortiz, ed., 27–73 (first edition, Oxford University Press, Colorado, 2014).

P. Coble, ”Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).

O. Zielinski, J. A. Busch, A. D. Cembella, J. Engelbrektsson, A. K. Hannides, and H. Schmidt, ”Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens,” Ocean Sci. 5, 329–349 (2009).

D. Kolpin, E. Furlong, M. Meyer, E. Thurman, S. Zaugg, L. Barber, and H. Buxton, ”Pharmaceuticals, hormones and other organic wastewater contaminants in U. S. streams 1999–2000: a national reconnaissance,” Environ. Sci. Technol. 36, 1202–1211 (2002).

R. W. P. M. Laane , A. D. Vethaak, J. Gandrass, K. Vorkamp, A. Köhler, M. M. Larsen, and J. Strand, ”Chemical contaminants in the Wadden sea: sources, transport, fate and effects,” J. Sea Res. 82, 10–53 (2002).

S. Gassmann, A. Trozjuk, J. Singhal, H. Schuette, M. L. Miranda, and O. Zielinski, ”PCB based micro fluidic system for thermal cycling of seawater samples,” in Proceedings to IEEE International Conference Industrial Technology (ICIT), 3365–3369 (IEEE, Seville, 2015).

G. Liebezeit, T. Kraul, and B. Everts, ”Bulk chemical characterization of particulate material from the Jade Bay, lower Saxonian Wadden Sea,” Neth. J. Aquat. Ecol. 28, 365–370 (1994).

H. Jin, G. Liebezeit, and D. Ziehe, ”Distribution of total mercury in surface sediments of the Western Jade Bay, Lower Saxonian Wadden Sea, Southern North Sea,” Bull. Environ. Contam. Toxicol. 88, 597–604 (2012).

S. Weigel, J. Kuhlmann, and H. Hühnerfuss, ”Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea,” Sci. Total Environ. 295, 131–141 (2002).