Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Effect of heat treatment on optical properties of crosslinkable Azo Chromophore doped in poly amic acid

S. Hamedi, A. Gharavi

Abstract


In this work, we have studied the optical properties of a crosslinkable poly amic acid containing Disperse Red 1. The thin films were cured at 130, 160 and 195 °C. The structural and optical properties of the doped films were investigated by using UV-VIS spectra, and Prism Coupling techniques. The composite crosslinks during poling rendering it totally insoluble. A r33 of 1.5 pm/v was obtained after poling.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15048]

Full Text: PDF

Citation Details


Cite this article

References


P. A. Sullivan, B. C. Olbricht, and L. R. Dalton, ”Advances in organic materials for optical modulation,” J. Lightwave Technol. 26, 2345–2354 (2008).

W. Wang, Y. Shi, D. Olson, W. Lin, and J. H. Bechtel, ”Push-Pull Poled Polymer Mach-Zehnder Modulators with a Single Microstrip Line Electrode,” IEEE Photonic. Tech. l. 11 , 51–53 (1999).

S. Hamedi, and A. Gharavi, ”Fabrication of an AzoPloymeric MachZehnder Electro- Optic Modulator,” in Proceedings to 20th Proc. Iran.Conf. optics and photonics (ICPET, Shiraz, 2013).

H. S. Nalwa, Handbook of Organic Electronics and Photonics (American Scientific Publisher, Stevenson Ranch, 2008).

T. Yoshimura, Thin-Film Organic Photonics: Molecular Layer Deposition and Applications (CRC Press, Baco Raton, 2011).

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K-Y. Jen, and N. Peyghambarian, ”Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94, 213513 (2009).

S. S. H. Sun, and L. R. Dalton, Introduction to Organic Electronic and Optoelectronic Materials and Devices (CRC Press, Boca Raton, 2008).

J. Luo, S. Liu, M. Haller, H. Li, T. D. Kim, K. S. Kim, H. Z. Tang, et al., ”Recent progress in developing highly efficient nonlinear optical chromophores and side-chain dendronized polymers for electro-optics,” P. Soc. Photo-Opt. Ins. 499, 520–529 (2003).

E. Sarailou, A. Gharavi, S. Javadpour, and V. Shkunov, ”Grating based electro-optic switch with azo nonlinear optical polymers,”Appl. Phys. Lett. 89, 171114 (2006).

H. Karimi-Alavijeh, G. Parsanasab, M. Baghban, and A. Gharavi, ”Two-dimensional photonic crystal for optical channel separation in azo polymers,” Appl. Optics 48, 3250–3254 (2009).

C. Zhang, H. Zhang, M. Oh, L. Dalton, and W. Steir, ”What the ultimate polymeric electro-optic materials will be: GuestHost, Crosslinked, or Side- Chain?,” P. Soc. Photo-Opt. Ins. 4991 , 537–550 (2003).

C. Park, Z. Ounaies, K. E. Wise, and J. S. Harrison, ”In situ poling and imidization of amorphous piezoelectric polyimides,” Polymer. 45, 5417–5425 (2004).

J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel , ”Thermal stability of electrooptic response in poled polyimide systems,” Appl. Phys. Lett. 58, 225–227 (1991).

S. Michela, J. Zyssa, I. Ledoux-Raka, C. T. Nguyena, ”Highperformance electro-optic modulators realized with a commercial side-chain DR1-PMMA electro-optic copolymer,” P. Soc. Photo-Opt. Ins. 7599, 759901 (2010).

S. K. Kim, Q. Pei, H. R. Fetterman, B. C. Olbright, and L. R. Dalton, ”Photo assisted corona poled YLD-124/DR1-co-pmma electro optic device using photo isomerization,” IEEE Photonic. Tech. l. 23, 845–847 (2011).

A. Donval, E. Toussaerea, S. Brasselet, and J. Zyss, ”Comparative Assessment of Electrical,Photoassistedand All Optical In-Plane Poling Of Polymer BasedElectroopticModulators,” Opt. Mater. 12, 215–219 (1999).

V. Khomchenko, A. B. Sotskv, A. A. Romanenko, and E. V. Glazunov, D. N. Kostyuchenko, ”Determination of thin film parameters by prism coupling technique,” Tech. Phys. Lett. 28,467–470 (2002).

C. Teng, and H. T. Man, ”Simple Reflection Technique For Measuring The Electro Optic Coefficient Of Poled Polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).