Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Compensation of phase nonlinearity of liquid crystal spatial light modulator for high-resolution wavefront correction

H. Zhang, H. Zhou, J. Li, Y. J. Qiao, J. Si, W. Gao


The ability of phase modulation enables liquid crystal spatial light modulator (LCSLM) to control wavefront. However, the disadvantage of its inherent nonlinear phase response will decrease the wavefront control accuracy. In this paper, a compensation for the nonlinear phase response is proposed based on Inverse Interpolation method. Characteristic curve of phase retardation versus gray levels for a 256x256 pixels phase-only LCSLM has been measured and calibrated by Inverse Interpolation. A mapping relationship between input gray levels and driving gray levels has been built and recorded by a linear look-up table ANTI2.LUT. The nonlinear error of the phase drops from 15.9% to 2.42% by using ANTI2.LUT. Further more, the mapping curve of ANTI2.LUT is almost consistent with 290.LUT from the manufacturer, which proved the efficiency of the compensation of phase nonlinearity. Finally, the distorted wavefront caused by a liquid crystal flake is corrected using LCSLM based on ANTI2.LUT. Experimental results show that the peak-valley value of the distorted wavefront decreases from 1.56l to 0.26l (l =0.6328 λm), the root-mean-square value decreases from 0.25l to 0.02l and the Strehl ratio of diffractive spots increases from 0.08 to 0.97. So LCSLM can be applied to realize high-precision and high-resolution wavefront correction with linear phase response.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15036]

Full Text: PDF

Citation Details

Cite this article


B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and Min Gu, ”Adaptive aberration compensation for three-dimensional microfabrication of photonic crystals in lithium niobate,” Opt. Express 19, 9419–9425 (2011).

C. Liu, L. F. Hu, Q. Q. Mu, Z. L.Cao, and L. Xuan, ”Open-loop control of liquid-crystal spatial light modulators for vertical atmospheric turbulence wavefront correction,” Appl. Opt. 50, 82–89 (2011).

H. Ma, P. Zhou, X. Wang, Y. Ma, F. Xi, X. Xu, and Z. Liu, ”Neardiffraction- limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators,” Opt. Express 18, 8251–8260 (2010).

D. Wang, J. Zhang, H. Wang, and Y. Xia, ”Variable shape or variable diameter flattop beam tailored by using an adaptive weight FFTbased iterative algorithm and a phase-only liquid crystal spatial light modulator,” Opt. Commun. 285, 5044–5050 (2012).

D. Wang, J. Zhang, and H. X. Zhang, ”Adaptive-weight iterative algorithm for flat-top laser beam shaping,” Opt. Eng. 51, 074301 (2012).

D. Wang, J. Zhang, Y. Xia, and H. Wang, ”Independent and arbitrary generation of spots in the 3D space domain with computer generated holograms written on a phase-only liquid crystal spatial light modulator,” J. Opt. 14, 105704 (2012).

D. Wang, Y.-L. Wu, B.-Q. Jin, P. Jia, and D.-M. Cai, ”A phase distribution design method for phased arrays multi-beam independently generating and three-dimensional scanning,” IEEE Photonics J. 6, 6802111 (2014).

J. S. Hong, Y. M. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S.-W. Min, et al., ”Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50, H87–H115 (2011).

M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, ”Color image projection based on Fourier holograms,” Opt. Lett. 35, 1227–1229 (2010).

M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, ”Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express 18, 11250–11263 (2010).

J. Andilla, E. Martín-Badosa, and S. Vallmitjana, ”Prediction of phase-mostly modulation for holographic optical tweezers,” Opt. Commun. 281, 3786–3791 (2008).

K. D. Xiao, C. Y. Fu, K. Dimosthenis, and S. Wuerger, ”Visual gamma correction for LCD displays,” Displays 32,17–23 (2011).

Y. Y. Wei, H. F. Li, and X. Liu, ”Automatic gamma correction system for liquid crystal projector,” J. Zhejiang Univ-Sc. A 39, 1727–1729 (2005) in Chinese.

S. R. Harris, ”Characterization and application of a liquid crystal beam steering device,” Proc. SPIE 4291,109–119 (2001).

L. F. Hu, L. Xuan, Y. J. Liu, Z. L. Cao, D. Y. Li, and Q. Q. Mu, ”Phaseonly liquid-crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12, 6403–6409 (2004).

X. J. Zhao, C. L. Liu, D. Y. Zhang, and Y. Q. Luo, ”Direct investigation and accurate control of phase profile in liquid-crystal optical-phased array for beam steering,” Appl. Optics 52, 7109– 7116 (2013).

S. Reichelt, ”Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators,” Appl. Opt. 52, 2610–2618 (2013).

D. Engström, M. Persson, J. Bengtsson, and M. Goksör, ”Calibration of spatial light modulators suffering from spatially varying phase response,” Opt. Express 21, 16086–16103 (2013).

A. Linnenberger, S. Serati, and J. Stockley, ”Advances in optical phased array technology,” Proc. SPIE 6304, 63040T (2006).

H. X. Zhang, J. Zhang, L. Y. Wu, ”Measurement of phase and intensity by Dual-imaging Interferometry for performance evaluation of liquid crystal spatial light modulator,” Optik 122, 1249–1253 (2011).