Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Invited Publication

New perspectives in silicon micro and nanophotonics

M. Casalino, G. Coppola, L. De Stefano, A. Caliò, I. Rea, V. Mocella, P. Dardano, S. Romano, S. Rao, I. Rendina

Abstract


In the last two decades, there has been growing interest in silicon-based photonic devices for many optical applications: telecommunications, interconnects and biosensors. In this work, an advance overview of our results in this field is presented. Proposed devices allow overcoming silicon intrinsic drawbacks limiting its application as a photonic substrate. Taking advantages of both non-linear and linear effects, size reduction at nanometric scale and new two-dimensional emerging materials, we have obtained a progressive increase in device performance along the last years. In this work we show that a suitable design of a thin photonic crystal slab realized in silicon nitride can exhibit a very strong field enhancement. This result is very promising for all photonic silicon devices based on nonlinear phenomena. Moreover we report on the fabrication and characterization of silicon photodetectors working at near-infrared wavelengths based on the internal photoemission absorption in a Schottky junction. We show as an increase in device performance can be obtained by coupling light into both micro-resonant cavity and waveguiding structures. In addition, replacing metal with graphene in a Schottky junction, a further improve in PD performance can be achieved. Finally, silicon-based microarray for biomedical applications, are reported. Microarray of porous silicon Bragg reflectors on a crystalline silicon substrate have been realized using a technological process based on standard photolithography and electrochemical anodization of the silicon. Our insights show that silicon is a promising platform for the integration of various optical functionalities on the same chip opening new frontiers in the field of low-cost silicon micro and nanophotonics.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15029]

Full Text: PDF

Citation Details


Cite this article

References


B. Jalali, ”Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006).

R. A. Soref, ”The past, present, and future of silicon photonics,” J. Sel. Top. Quantum Electron. 12, 678–1687 (2006).

R. A. Soref, and J. Lorenzo, ”All-silicon active and passive guidedwave components for l = 1.3 and 1.6 µm,” IEEE J. Quantum Electron. 22, 873–879 (1986).

R. A. Soref, and B. R. Bennett, ”Kramers-Kronig analysis of E-O switching in silicon,” Proc. SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).

B. Schuppert, J. Schmidtchen, and K. Petermann, ”Optical channel waveguides in silicon diffused from GeSi alloy,” Electron. Lett. 25, 1500–1502 (1989).

R. A. Soref, J. Schmidtchen, and K. Petermann, ”Large single-mode rib waveguides in GeSi and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E, Post, ”CMOScompatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43, 392–393 (2007).

L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, et al., ”Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightw. Technol. 24, 3810–3815 (2006).

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, ”12.5 Gbit/s carrierinjection- based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, ”An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15, 4745–4752 (2007).

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, et al., ”High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).

A. Liu, R. Jones, O. Cohen, D. Hak, and M. Paniccia, ”Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” J. Lightw. Technol. 24, 1440–1445 (2006).

M. Casalino, L. Sirleto, L. Moretti, M. Gioffr` , G. Coppola, M. Iodice, and I. Rendina, ”Back-illuminated silicon resonant cavity enhanced photodetector at 1550 nm,” Physica E 41, 1097–1101 (2009).

S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, ”Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage–length product,” Opt. Laser Technol. 45, 204–208 (2013).

F. G. Della Corte, and S. Rao, ”Use of amorphous silicon for active photonic devices,” IEEE Transactions on Electron Devices 60, 1495–1505 (2013).

J. D. Joannopulos, R. D. Mead, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995).

S. G. Johnson, and J. D. Joannopoulos, Photonic crystals: the road from theory to practice (Kluwer Academic Publishers, New York, 2003).

P. Dardano, L. Moretti, V. Mocella, L. Sirleto, and I. Rendina, ”Investigation of a tunable T-shaped waveguides based on a silicon 2D photonic crystal,” J. Opt. A-Pure Appl. Opt. 8, S554–S560 (2006).

M. Notomi, ”Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, et al., ”Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. De La Rue, ”Photonic bandstructure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255 (1999).

D. Peyradea, J. Torresa, D. Coquillata, R. Legrosa, J.P. Lascaraya, Y. Chenb, L. Manin-Ferlazzob, et al., ”Equifrequency surfaces in GaN/sapphire photonic crystals,” Physica E 17, 423–425 (2003).

X. Guo, ”Surface plasmon resonance based biosensor technique: a review,” J. Biophoton. 5, 483–501 (2012).

A. Giorgini, S. Avino, P. Malara, G. Gagliardi, M. Casalino, G. Coppola, M. Iodice, et al., ”Surface-plasmon-resonance optical-cavity enhanced refractive index,” Opt. Lett. 38, 1951–1953 (2013).

J. Kneipp, H. Kneipp, and K. Kneipp, ”SERS- a single-molecule and nanoscale tool for bioanalytics,” Chem. Rev. Soc. 37, 1052–1060 (2008).

E. De Tommasi, A. C. De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, ”Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).

P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. mocella, ”Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light Sci. Appl. 1, e42 (2012).

K. Ishizaki, and S. Noda, ”Manipulation of photons at the surface of threedimensional photonic crystals,” Nature 460, 367–370 (2009).

B. Luk’yanchunk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Ordlander, H. Giessen, and C. T. Chong, ”The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707-715 (2010).

V. G. Kravets, F. Schedin, and A. N. Grigorenko, ”Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 0087403 (2008).

S. Romano, and V. Mocella, ”Guided resonance in negative index photonic crystals: a new approach,” Light Sci. Appl. 3, 1–6 (2014).

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, ”Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).

C. W. Hsu, B. Zhen, S. L. Chua, and S. G. Johnson, ”Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2, e84 (2013).

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, ”Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).

J. Von Neumann, and E. Wigner, ”Über merkwürdige diskrete Eigenwerte,” Phys. Z 30, 465–467 (1929) in German.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, ”All-silicon sub- Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Lett. 96, 101103 (2010).

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, ”Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photonic. Tech. L. 22, 1530-1532 (2010).

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, ”Nearinfrared sub-nandgap all-silicon photodetectors: state of the art and perspectives,” Sensors 10, 10571–10600 (2010).

R. H. Fowler, ”The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931).

V. E. Vickers, ”Model of schottky barrier hot-electron-mode photodetection,” Appl. Opt. 10, 2190–2192 (1971).

P. Berini, A. Olivieri, and C. Chen, ”Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23, 444011 (2012).

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, ”Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20, 28594–28602 (2012).

M. Casalino, L. Sirleto, L Moretti, M. Gioffrè, G. Coppola, and I. Rendina, ”Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 micron: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008).

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirelto, ”Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol. 28, 3266–3272 (2010).

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, ”Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20, 12599–12609 (2012).

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, ”Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21, 28072–28082 (2013).

M. Amirmazlaghani, F. Raissi, O. Habibpour, J.Vukusic, and J. Stake, ”Graphene-Si Schottky IR detector,” IEEE J. Quant. Elect. 49, 589–594 (2013).

C. Chen, M. Aykol, C. Chang, A. F. J. Levi, and S. B. Cronin, ”Graphene-silicon Schottky diodes,” Nano Lett. 11, 1863–1867 (2011).

M. A. Muriel, and A. Carballar, ”Internal field distributions in fiber Bragg gratings,” IEEE Photonic. Tech. L. 9, 955–957 (1997).

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, et al., ”Microcavity-integrated graphene photodetector,” Nano Lett. 13, 2773–2777 (2012).

E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1998).

M. Casalino, G. Coppola, M. Iodice, I. Rendina, U. Sassi, A. Lombardo, S. Milana, et al., ”Silicon photodetectors based on internal photoemission effect: the challenge of detecting near infrared light,” in Proceedings to the 16th International Conference on Transparent Optical Networks, 1–4 (IEEE, Graz, 2014).

I. Rea, A. Lamberti, I. Rendina, G. Coppola, M. Gioffrè, M. Iodice, M. Casalino, et al., ”Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions,” J. Appl. Phys. 107, 014513 (2010).

I. Rea, E. Orabona, A. Lamberti, I. Rendina, and L. De Stefano, ”A microfluidics assisted porous silicon array for optical label-free biochemical sensing,” Biomicrofluidics 5, 034120 (2011).

E. Orabona, I. Rea, I. Rendina, and L. De Stefano, ”Numerical optimization of a microfluidic assisted microarray for the detection of biochemical interactions,” Sensors 11, 9658–9666 (2011).

L. De Stefano, I. Rea, E. Orabona, and I. Rendina, ”Microfluidics assisted biosensors for label-free optical monitoring of molecular interactions,” Sensor. Actuat. B-Chem. 179, 157–162 (2013).