Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Integrating-sphere measurements for determining optical properties of tissue-engineered oral mucosa

A. M. Ionescu, J. C. Cardona, I. Garzón, A. C. Oliveira, R. Ghinea, M. Alaminos, M. M. Pérez


Surgical procedures carried out in the oral and maxillofacial region can result in large tissue defects. Accounting for the shortage of oral mucosa to replace the excised tissues, different models of an organotypic substitute of the oral mucosa generated by tissue engineering have recently been proposed. In this work, the propagation of light radiation through artificial human oral mucosa substitutes based on fibrin-agarose scaffolds (fibrin, fibrin-0.1% agarose, fibrin-0.2%agarose) is investigated, and their optical properties are determined using the inverse adding-doubling (IAD) method based on integrating-sphere measurements. Similar values for the absorption and scattering coefficients between the fibrin and fibrin-0.1% agarose bioengineered tissues and the native oral mucosa were found. These results suggest the adequacy of these biomaterials for potential clinical use in human oral mucosa applications. These optical properties represent useful references and data for applications requiring the knowledge of the light transport through this type of tissues, applications used in clinical practice. It also provides a new method of information analysis for the quality control of the development of the artificial nanostructured oral mucosa substitutes and its comparison with native oral mucosa tissues.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15012]

Full Text: PDF

Citation Details

Cite this article


L. J. Walsh, ”The current status of laser applications in dentistry,” Aust. Dent. J. 48, 146–155 (2003).

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, ”Optical clearing in cranial bone,” Adv. Opt. Tech. 2008, 267867 (2008).

D. K. Sardar, G. Y. Swanland, R. M. Yow, R. J. Thomas, and A. T. Tsin, ”Optical properties of ocular tissues in the near infrared region,” Lasers Med. Sci. 22, 46–52 (2007).

M. Sulieman, ”An overview of the use of lasers in general dental practice: 2. Laser wavelengths, soft and hard tissue clinical applications,” Dent. Update 32, 286–288, 291–296 (2005).

H. Deppe, and H. H. Horch, ”Laser applications in oral surgery and implant dentistry,” Lasers Med. Sci. 22, 217–221 (2007).

L. J. Walsh, ”Dental lasers: Some basic principles,” Postgrad. Dent. 4, 26–29 (1994).

S. Schultze-Mosgau, B. K. Lee, J. Ries, K. Amann, and J. Wiltfang, ”In vitro cultured autologous pre-confluent oral keratinocytes for experimental prefabrication of oral mucosa,” Int. J. Oral. Max. Surg. 33, 476–485 (2004).

J. Song, K. Izumi, T. Lanigan, and S. E. Feinberg,”Development and characterization of a canine oral mucosa equivalent in a serum free environment,” J. Biomed. Mater. Res. 71, 143–153 (2004).

G. Lauer, and R. Schimming, ”Tissue-engineered mucosa graft for reconstruction of the intraoral lining after freeing of the tongue: a clinical and immunohistologic study,” Int. J. Oral. Max. Surg. 59, 169–175 (2001).

M. C. Sanchez-Quevedo, M. Alaminos, L. M. Capitan, G. Moreu, I. Garzon, P. V. Crespo, and A. Campos, ”Histological and histochemical evaluation of human oral mucosa constructs developed by tissue engineering,” Histol. Histopathol. 22, 631–640 (2007).

I. Garzón, M. C. Sánchez-Quevedo, G. Moreu, M. González-Jaranay, M. González-Andrades, A. Montalvo, M. Alaminos, and A. Campos, ”In vitro and in vivo cytokeratin patterns of expression in bioengineered human periodontal mucosa,” J. Periodontal Res. 44, 588–597 (2009).

M. Moharamzadeh, I. M. Brook, R. Van Noort, A. M. Scutt, and M. H. Thornhill, ”Tissue-engineered oral mucosa: a review of the scientific literature,” J. Dent. Res. 86, 115–124 (2007).

S. A. Prahl, M. J. C. Van Gemert, and A. J. Welch, ”Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Optics 32, 559–568 (1993).

S. Chandrasekhar, Radiative transfer (Ed. Dover, New York, 1960).

D. K. Sardar, B. G. Yust, F. J. Barrera, L. C. Mimun, and A. T. C. Tsin, ”Optical absorption and scattering of bovine cornea, lens and retina in the visible region,” Lasers Med. Sci. 24, 839–847 (2009).

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, ”Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D. Appl. Phys. 38, 2543–2555 (2005).

D. K. Sardar, and L. B. Levy. ”Optical properties of whole blood,” Lasers Med. Sci. 13, 106-111 (1998).

W. F. Cheong, S. A. Prahl, and A. J. Welch, ”A review of the optical properties of biological tissues,” IEEE J. Quantum Elect. 26, 2166–2171 (1990).

P. L. McCormack, ”Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis,” Drugs 72, 585-617 (2012).

S. Llames, E. García, V. García, M. del Río, F. Larcher, J. L. Jorcano, E. López, et al., ”Clinical results of an autologous engineered skin,” Cell Tissue Bank 7, 47–53 (2006).

I. Peõa, L. M. Junquera, A. Meana, E. García, V. García, and J. C. De Vicente, ”In vitro engineering of complete autologous oral mucosa equivalents: characterization of a novel scaffold,” J. Periodontal. Res. 45, 375–380 (2010).

I Garzon, D. Serrato, O. Roda, M. Del Carmen Sanchez-Quevedo, M. Gonzales-Jaranay, G. Moreu, R. Nieto-Aguilar, et al., ”In vitro cytokeratin expression profiling of human oral mucosa substitutes developed by tissue engineering,” Int. J. Artif. Organs 32, 711–719 (2009).

S. San Martin, M. Alaminos, T. M. Zorn, M. C. Sánchez-Quevedo, I. Garzón, I. A. Rodriguez, and A. Campos, ”The effects of fibrin and fibrin-agarose on the extracellular matrix profile of bioengineered oral mucosa" J. Tissue Eng. Regen. M. 7, 10–19 (2013).

E. Hadjipanayi, M. Ananta, M. Binkowski, I. Streeter, Z. Lu, Z. F. Cui, R. A. Brown, et al., ”Mechanisms of structure generation during plastic compression on nanofibrillar collagen hydrogel scaffolds: towards engineering of collagen,” J. Tissue Eng. Reg. M. 5, 505–519 (2011).

A. M. Ionescu, M. Alaminos, J. de la Cruz Cardona, J. de Dios García- López Durán, M. González-Andrades, R. Ghinea, A. Campos, et al., ”Investigating a novel nanostructured fibrin-agarose biomaterial for human cornea tissue engineering: rheological properties,” J. Mech. Behav. Biomed. 4, 1963–1973 (2011).

J. W. Pickering, J. C. M. Moes, S. A. Prahl, and M. J. C. van Gemert, ”Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992).

D. K. Sardar, R. M. Yow, A. T. Tsin, and R. Sardar, ”Optical scattering, absorption and polarization of healthy and neovascularized human retinal tissues,” J. Biomed. Opt. 10, 051501.1–8 (2005).

B. G. Yust, L. C. Mimun, and D. K. Sardar, ”Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region,” Lasers Med. Sci. 27, 413–422 (2012).

T. Moffit, Y. C. Chen, and S. A. Prahl, ”Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Optics 11, 041103.1-10 (2006).

M. Ueda, K. Ebata, and T. Kaneda, ”In Vitro fabrication of bioartificial mucosa for reconstruction of oral mucosa: Basic research and clinical application,” Ann. Plast. Surg. 27, 540–549 (1991).

I. Schlenz, K. J. Korak, R. Kunstfeld, K. Vinzenz, H. Plenk Jr, and J. Holle, ”The dermis-prelaminated scapula flap for reconstructions of the hard palate and the alveolar ridge: a clinical and histologic evaluation,” Plast. Reconstr. Surg. 108, 1519–1524 (2001).

K. Izumi, S. E. Feinberg, A. Iida, and M. Yoshizawa ”Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary report,” Int. J. Oral. Max. Surg. 32, 188–197 (2003).

M. Alaminos, M. Del Carmen Sánchez-Quevedo, J. I. Muõoz-Avila, D. Serrano, S. Medialdea, I. Carreras, and A. Campos, ”Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold,” Invest. Ophth. Vis. Sci. 47, 3311–3317 (2006).

M. G. Haugh, S. D. Thorpe, T. Vinardell, C. T. Buckley, and D. J. Kelly, ”The application of plastic compression to modulate fibrin hydrogel mechanical properties,” J. Mech. Behav. Biomed. 16, 66–72 (2012).

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson ”Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Optics 37, 3586–3593 (1998).

A. K. Popp, M. T. Valentine, P. D. Kaplan, and D. A. Weitz ”Microscopic origin of light scattering in tissue,” Appl. Opt. 42, 2871–2880 (2003).

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky ”Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026.1-064026.9 (2006).

J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. M. Johnson, A. Matanock, K. Stetter, et al., ”Light scattering from cells: the contributions of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131–137 (2000).

C. T. Buckley, S. D. Thorpe, F. J. O’Brien, A. J. Robinson, and D. J. Kelly, ”The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels,” J. Mech. Behav. Biomed. 2, 512–521 (2009).

A. C. Aufderheide, and K. A. Athanasiou, ”Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus,” Tissue Eng. 11, 1095–1104 (2005).

I. A. Rodríguez, M. T. López-López, A. C. Oliveira, M. C. Sánchez- Quevedo, A. Campos, M. Alaminos, and J. D. Durán, ”Rheological characterization of human fibrin and fibrin-agarose oral mucosa substitutes generated by tissue engineering,” J. Tissue Eng. Regen. M. 6, 636–644 (2012).

D. E. Birk, E. I. Zycband, and S. Woodruff, ”Collagen fibrinogenesis in situ: fibril segments become long fibrils as the developing tendon matures,” Dev. Dynam. 208, 291–298 (1997).

T. Starborg, Y. Lu, K. E. Kadler, and D. F. Holmes ”Electron microscopy of collagen fibril structure in vitro and in vivo, including three-dimensional reconstruction,” Methods Cell. Biol. 88, 319–345 (2008).

K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, ”Transparency, swelling and scarring in the corneal stroma,” Eye 17, 927–936 (2003).