Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Polarization insensitive single mode Al2O3 rib waveguide design for applications in active and passive optical waveguides

A. Özden, M. Demirtaş, F. Ay


Both passive and active, single mode, wavelength and polarization insensitive design of Al2O3 rib waveguides on SiO2 substrate is reported. Influence of the waveguide height, etch depth, waveguide width and operation wavelength to the mode number, mode size, birefringence and polarization sensitivity were analyzed with Beam Propagation Method. Design parameters for targeted properties are computed for waveguide widths ranging from 0 to 10 µm, and for etch depth ranging from 0 to 0.5 µm for fixed waveguide height of 0.5 µm. A design window for a fixed width of 3.5 µm and etch depths between 0.325 to 0.375 µm is identified for single mode, wavelength and polarization insensitive operation of Al2O3 waveguides on thermal oxide. A novel rib TE mode selective filter design is also suggested as an output of the numerical simulations.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15005]

Full Text: PDF

Citation Details

Cite this article


S. Kasap, and P. Capper Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2006).

M. Demirta¸s ,A. Özden, and F. Ay, ”Optimization of ALD grown Al2O3 host material for use in integrated optical circuits,” in proceedings to the 10th Nanoscience and Nanotechnology Conference 138 (Yeditepe University, Istanbul, 2014).

G. Este, and W. D. Westwood, ”Reactive deposition of low loss Al2O3 optical waveguides by modified dc planar magnetron sputtering,” J. Vac. Sci. Technol. A 2, 1238 (1984).

M. K. Smit, and G. A. Acket, ”Al2O3 films for integrated optics,” Thin Solid Films 138, 171–181, (1986).

M. Mahnke, S. Wiechmann, H. J. Heider, O. Blume, and J. Müller, ”AluminumOxide Doped with Erbium, Titaniumand Chromiumfor Active Integrated Optical Applications,” Int. J. Electron. Comm. 50, 342–348 (2001).

A. Suarez-Garcia, J. Gonzalo, and C. N. Afonso, ”Low-loss Al2O3waveguides produced by pulsed laser deposition at room temperature,” Appl. Phys. A-Matter 77, 779–783 (2003).

M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, ”Low-Loss Optical Waveguides for the Near Ultra-Violet and Visible Spectral Regions with Al2O3 Thin Films from Atomic Layer Deposition,” Thin Solid Films 518, 4935–4940 (2010).

H. Moshe, and Y. Mastai, ”Atomic Layer Deposition on Self- Assembled-Monolayers,” in Materials Science - Advanced Topics, Prof. Yitzhak Mastai (Ed.) (InTech, Rijeka, 2013).

K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, ”Erbium-Doped Waveguides Fabricated With Atomic Layer Deposition Method,” IEEE Photonic Tech. L. 16, 194–196 (2004).

R. A. Soref, J. Schmidtchen, and K. Petermann, ”Large Single- Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Elect. 27, 1971–1974 (1991).

N. M. Kassim, A. B. Mohammad, A. S. M. Supa’at, M. H. Ibrahim, and S. Y. Gang, ”Single Mode Rib Optical Waveguide Modeling Techniques,” in proceedings of RF and Microwave Conference Malaysia, 272–276 (IEEE, Subang, Selangor, 2004).

M. Laurentis, A. Irace, and G. Breglio, ”Determination of single mode condition in dielectric rib waveguide with large cross section by finite element analysis,” J. Comput. Electron. 6, 285–287 (2007).

J. Duan, J. Wang, B. Zhang, and Y. Ren, ”Optimizing Design of a Single-Mode Optical Rib Waveguide,” Adv. Mat. Res. 710, 464–468 (2013).

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, ”Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).

C. Ciminelli, P. Frascella, and M. N. Armenise, ”Optical modelling of a Si-based DBR laser source using a nanocrystal Si-sensitized Er-doped silica rib waveguide in the C-band,” J. Eur. Opt. Soc.- Rapid 3, 08017 (2008).

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, and V. Mahajan et al., Handbook of optics (3rd edition, McGraw Hill Professional, London, 2009).

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, ”Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quant. 6, 150–162 (2000).

D. A. Yevick, ”guide to electric-field propagation techniques for guided-wave optics,” Opt. Quant. Electron. 26, S185–S197 (1994).

K. S. Chiang, ”Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides,” Opt. Quant. Electron. 26, S113–S134 (1994).

G. R. Hadley, ”Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).

C. R. Pollock, Fundamentals of Optoelectronics (Richard D Irwin Inc, Chicago, 1994).

O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, ”Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett. 70, 750–752 (1997).

S. Ohke, T. Umeda, and Y. Cho, ”TM-mode selective filter using leaky waveguide structure,” Electron. Commun. JPN. 85, 1241–1246 (2002).

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, ”Fundamental transverse electric field (TEo) mode selection for thinfilm asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972).

Y. Okamura, S. Yamamoto, and T. Makimoto, ”Wave propagation in semileaky-type anisotropic thin-film optical waveguides,” J. Opt. Soc. Am. 67, 539–545 (1977).

A. Y. Agapov, A. P. Gorobetz, V. M. Shevtsov, and P. M. Zhitkov, ”Efficient TM-pass multilayer planar optical waveguide polarizer,” Electron. Lett. 27, 1804–1805 (2012).

G. N. V. D. Hoven, R. J. I. M. Koper, and A. Polman, ”Net optical gain at 1.53 µm in Er-doped Al2O3waveguides on silicon,” Appl. Phys. Lett., 64: 1886-1888, (1996).

L. Agazzi, J. D. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, et al., ”Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18, 27703–27711 (2010).