Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Fourier ellipsometry – an ellipsometric approach to Fourier scatterometry

P. Petrik, N. Kumar, M. Fried, B. Fodor, G. Juhasz, S. F. Pereira, S. Burger, H. P. Urbach

Abstract


An extension of Fourier scatterometry is presented, aiming at increasing the sensitivity by measuring the phase difference between the reflections polarized parallel and perpendicular to the plane of incidence. The ellipsometric approach requires no additional hardware elements compared with conventional Fourier scatterometry. Furthermore, incoherent illumination is also sufficient, which enables spectroscopy using standard low-cost light sources.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15002]

Full Text: PDF

Citation Details


Cite this article

References


B. Bodermann, E. Buhr, H.-U. Danzebrink, M. Bär, F. Scholze, M. Krumrey, M. Wurm, et al., ”Joint research on scatterometry and AFM wafer metrology,” AIP Conf. Proc. 1395, 319–323 (2011).

B. Bodermann, P.-E. Hansen, S. Burger, M.-A. Henn, H. Gross, M. Bär, F. Scholze, et al., ”First steps towards a scatterometry reference standard,” Proc. SPIE 8466, 84660E-1–84660E-8 (2012).

V. Ferreras Paz, S. Peterhänsel, K. Frenner, and W. Osten, ”Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1, e36 (2012).

N. Kumar, P. Petrik,G. K. P. Ramanandan, O. El Gawhary, S. Roy, S. F. Pereira, W. M. J. Coene, et al., ”Reconstruction of subwavelength features and nano-positioning of gratings using coherent Fourier scatterometry,” Opt. Express 22, 24678–24688 (2014).

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desières, J. Hazart, and P. Chaton, ”Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, ”Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105, 775–781 (2011).

N. Kumar, O. El Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, ”Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning,” J. Europ. Opt. Soc. Rap. Public. 8, 13048 (2013).

S. Roy, N. Kumar, S. F. Pereira, and H. P. Urbach, ”Interferometric coherent Fourier scatterometry: a method for obtaining high sensitivity in the optical inverse-grating problem,” J. Opt. 15, 75707–75715 (2013).

H. Fujiwara, Spectroscopic ellipsometry: principles and applications (Wiley, New York, 2007).

M. Losurdo, and K. Hingerl, Ellipsometry at the nanoscale (Springer-Verlag, Heidelberg, 2012).

H. G. Tompkins, and E. A. Irene, Handbook of ellipsometry (William Andrew Publishing, Norwich, 2005).

N. Kumar, Coherent Fourier scatterometry (PhD thesis, Technical University Delft, 2014).

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, and H. P. Urbach, ”Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Control 8324, 83240Q (2012).

S. Roy, O. El Gawhary, N. Kumar, S. F. Pereira, and H. P. Urbach, ”Scanning effects in coherent Fourier scatterometry,” J. Europ. Opt. Soc. Rap. Public. 7, 12031 (2012).

M. G. M. M. van Kraaij, Forward diffraction modelling: analysis and application to grating reconstruction (PhD thesis, Technische Universiteit Eindhoven, 2011).

W. H. Press, S. A. Teukolsky, W. Vetterling, and B. P. Flannery, Numerical recipes in C: the art of scientific computing (Cambridge University Press, Cambridge, 1995).

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, ”InP optical constants between 0.75 and 5.0 eV determined by variableangle spectroscopic ellipsometry,” J. Appl. Phys. 77, 1715–1724 (1995).

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, ”Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. B. 244, 3419–3434 (2007).

S. Burger, L. Zschiedrich, J. Pomplun, F. Schmidt, and B. Bodermann, ”Fast simulation method for parameter reconstruction in optical metrology,” Proc. SPIE 8681, 868119 (2013).