Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

An extremely large group index via electromagnetically induced transparency in metamaterials

A. Sayahian Jahromi, M. Askari

Abstract


We numerically demonstrate a planar design of a metamaterial exhibiting electromagnetically induced transparency at gigahertz frequencies. The design is based on the coupling of two oppositely oriented semi split-rings in the same plane. A very large transmission contrast of about 60 dB between the peak of the EIT window and the dips of the transmission gaps is calculated. An extremely large group index associated with the resonant response in the transmission window is demonstrated, rendering the design suitable for slow light applications.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14048]

Full Text: PDF

Citation Details


Cite this article

References


A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, ”Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001).

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, ”Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

L.V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, ”Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).

M. Fleischhauer, and M. D. Lukin, ”Dark-State Polaritons in Electromagnetically Induced Transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).

C. Liu, Z. Dutton, C. H. Behroozi, and L.V. Hau, ”Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, ”Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).

C. L. Garrido Alzar, M.A.G. Martinez, and P. Nussenzveig, ”Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, ”Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, ”Plasmon- Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, ”Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101, 253903 (2008).

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, ”Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, ”Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).

N. Niakan, M. Askari, and A. Zakery, ”High Q-factor and large group delay at microwave wavelengths via electromagnetically induced transparency in metamaterials,” J. Opt. Soc. Am. B. 29, 2329–2333 (2012).

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, et al., ”Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, ”Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B. 79, 085111 (2009).

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, ”Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B. 80, 153103 (2009).

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Gissen, ”Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, ”Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663–1667 (2009).

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, ”Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, ”Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, ”Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97, 241904 (2010).