Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Linear and nonlinear tunable optical properties of intersubband transitions in GaN/AlN quantum dots in presence and absence of wetting layer

A. Khaledi-Nasab, M. Sabaeian, M. Rezaie, M. Mohammad-Rezaee

Abstract


In this study we have performed a numerical approach to investigate the optical properties of GaN/AlN quantum dots (QDs). We have used nice homemade finite element method (FEM) codes to solve the Schrödinger equation, in presence and absence of wetting layer. The optical properties of both well-known, truncated pyramids–shaped, wurtize (WZ) and zinc blande (ZB) QDs have been investigated. It is demonstrated, there is slight amount of difference between all orders of absorption coefficients and relative refractive index changes (RRIC) for both structures. The effect of relaxation rate studied as well. Overlay it is shown that the optical properties ZB/WZ QDs could be engineered in well-manner.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14011]

Full Text: PDF

Citation Details


Cite this article

References


D. Williams, A. Andreev, and E. O’Reilly, ”Dependence of exciton energy on dot size in GaN/AlN quantum dots,” Phys. Rev. B 73, 241301 (2006).

R. Melnik, and M. Willatzen, ”Bandstructures of conical quantum dots with wetting layers,” Nanotechnology 15, 1 (2004).

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, et al., ”Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).

R. Stevenson, R. Young, P. Atkinson, K. Cooper, D. Ritchie, and A. Shields, ”A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. Helmy, and G. Weihs, ”Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).

G. Juska, V. Dimastrodonato, L. O. Mereni, A. Gocalinska, and E. Pelucchi, ”Towards quantum-dot arrays of entangled photon emitters,” Nat. Photonics 7, 527–531 (2013).

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, et al., ”A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, et al., ”Optical signatures of coupled quantum dots,” Science 311, 636–639 (2006).

S. Michael, W. W. Chow, and H. C. Schneider, ”Group-velocity slowdown in a double quantum dot molecule,” Phys. Rev. B 88, 125305 (2013).

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. L. Kerfoot, M. Scheibner, et al., ”Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2013).

H. R. Hamedi, A. Khaledi-Nasab, and H. Ghaforyan, ”Tunneling Control of Transmission Coefficient and Group Index in a Quantum Dot Nanostructure,” Advances in Condensed Matter Physics 2014, 589415 (2014).

A. Khaledi-Nasab, M. Sabaiean, M. Sahrai, and V. Fallahi, ”Optical Rectification and Second Harmonic Generation on Quasi-Realistic InAs/GaAs Quantum Dots: With Attention to Wetting Layer Effect,” ISRN Condensed Matter Physics 2013, 530259 (2013).

A. Khaledi-Nasab, M. Sabaeian, M. Sahrai, V. Fallahi, and M. Mohammad-Rezaee, ”The effect of Woods-Saxon potential on envelope function, intersubband dispersion curves and group velocity of InAs/GaAs quantum dots with wetting layer,” Physica E (2014) article in press.

F. Ponce, and D. Bour, ”Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386, 351–359 (1997).

S. Lazar, C. Hébert, and H. Zandbergen, ”Investigation of hexagonal and cubic GaN by high-resolution electron energy-loss spectroscopy and density functional theory,” Ultramicroscopy 98, 249– 257 (2004).

F. Widmann, B. Daudin, G. Feuillet, Y. Samson, J. Rouviere, and N. Pelekanos, ”Growth kinetics and optical properties of selforganized GaN quantum dots,” J. Appl. Phys. 83, 7618–7624 (1998).

J. Chen, A. Markus, A. Fiore, U. Oesterle, R. Stanley, J. Carlin, R. Houdre, et al., ”Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 µm applications,” J. Appl. Phys. 91, 6710–6716 (2002).

C. Reaves, R. Pelzel, G. Hsueh, W. Weinberg, and S. DenBaars, ”Formation of self-assembled InP islands on a GaInP/GaAs (311) A surface,” Appl. Phys. Lett. 69, 3878–3880 (1996).

M. Hanke, M. Schmidbauer, D. Grigoriev, H. Raidt, P. Schäfer, R. Köhler, A.-K. Gerlitzke, et al., ”SiGe/Si (001) Stranski-Krastanow islands by liquid-phase epitaxy: Diffuse x-ray scattering versus growth observations,” Phys. Rev. B 69, 075317 (2004).

S. Kako, K. Hoshino, S. Iwamoto, S. Ishida, and Y. Arakawa, ”Exciton and biexciton luminescence from single hexagonal GaNâ´L¸T AlN self-assembled quantum dots,” Appl. Phys. Lett. 85, 64 (2004).

S. Prabhakar, and R. Melnik, ”Influence of electromechanical effects and wetting layers on band structures of AlN/GaN quantum dots and spin control,” J. Appl. Phys. 108,064330–064337 (2010).

K. Kawasaki, D. Yamazaki, A. Kinoshita, H. Hirayama, K. Tsutsui, and Y. Aoyagi, ”GaN quantum-dot formation by self-assembling droplet epitaxy and application to single-electron transistors,” Appl. Phys. Lett. 79, 2243–2245 (2001).

K. Hoshino, and Y. Arakawa, ”UV photoluminescence from GaN self-assembled quantum dots on AlxGa1â˘A¸SxN surfaces grown by metalorganic chemical vapor deposition,” Phys. Status Solidi C 1, 2516–2519 (2004).

M. Razeghi, and A. Rogalski, ”Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996).

R. Dingle, D. Sell, S. Stokowski, and M. Ilegems, ”Absorption, reflectance, and luminescence of GaN epitaxial layers,” Phys. Rev. B 4, 1211 (1971).

W. Yim, E. Stofko, P. Zanzucchi, J. Pankove, M. Ettenberg, and S. Gilbert, ”Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44, 292–296 (1973).

B. Monemar, ”Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B 10, 676 (1974).

P. Lefebvre, and B. Gayral, ”Optical properties of GaN/AlN quantum dots,” C. R. Phys. 9, 816–829 (2008).

L. S. Dang, G. Fishman, H. Mariette, C. Adelmann, E. Martinez- Guerrero, J. Simon, B. Daudin, et al., ”GaN quantum dots: Physics and applications,” J. Korean Phys. Soc. 42, 657–661 (2003).

G. Salviati, F. Rossi, N. Armani, V. Grillo, O. Martinez, A. Vinattieri, B. Damilano, et al., ”Optical and structural characterization of selforganized stacked GaN/AlN quantum dots,” J. Phys.-Condens. Mat. 16, 115 (2004).

J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, ”Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires,” Nano Lett. 8, 2092–2096 (2008).

V. A. Fonoberov, and A. A. Balandin, ”Optical properties of wurtzite and zinc-blende GaN/AlN quantum dots,” J. Vac. Sci. Technol. B 22, 2190–2194 (2004).

N. Skoulidis, V. Vargiamidis, and H. Polatoglou, ”Study of the structural and optical properties of GaN/AlN quantum dot superlattices,” Superlattice. Microst. 40, 432–439 (2006).

N. Nuntawong, S. Birudavolu, C. Hains, S. Huang, H. Xu, and D. Huffaker, ”Effect of strain-compensation in stacked< equation> 1.3< span style=,” Appl. Phys. Lett. 85, 3050–3052 (2004).

N. Nuntawong, J. Tatebayashi, P. Wong, and D. Huffaker, ”Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structures,” Appl. Phys. Lett. 90, 163121 (2007).

H. Zhao, R. A. Arif, Y.-K. Ee, and N. Tansu, ”Self-consistent analysis of strain-compensated InGaNâ˘A¸SAlGaN quantum wells for lasers and light-emitting diodes,” IEEE J. Quant. Electron. 45, 66–78 (2009).

S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, ”Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).

M. Sabaeian, and A. Khaledi-Nasab, ”Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer,” Appl. Optics 51, 4176–4185 (2012).

I. Vurgaftman, and J. Meyer, ”Band parameters for nitrogencontaining semiconductors,” J. Appl. Phys. 94, 3675–3696 (2003).

P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, and M. Scheffler, ”Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN,” Phys. Rev. B 77, 075202 (2008).

E. Silveira, J. Freitas, M. Kneissl, D. Treat, N. Johnson, G. Slack, and L. Schowalter, ”Near-bandedge cathodoluminescence of an AlN homoepitaxial film,” Appl. Phys. Lett. 84, 3501–3503 (2004).

Z. Sitar, M. Paisley, B. Yan, R. Davis, J. Ruan, and J. Choyke, ”AlN/GaN superlattices grown by gas source molecular beam epitaxy,” Thin Solid Films 200, 311–320 (1991).

G. Ramirez-Flores, H. Navarro-Contreras, A. Lastras-Martinez, R. Powell, and J. Greene, ”Temperature-dependent optical band gap of the metastable zinc-blende structure β-GaN,” Phys. Rev. B 50, 8433 (1994).

H. Okumura, S. Yoshida, and T. Okahisa, ”Optical properties near the band gap on hexagonal and cubic GaN,” Appl. Phys. Lett. 64, 2997–2999 (1994).

L. Chen, B. Skromme, R. Dalmau, R. Schlesser, Z. Sitar, C. Chen, W. Sun, et al., ”Band-edge exciton states in AlN single crystals and epitaxial layers,” Appl. Phys. Lett. 85, 4334–4336 (2004).

M. P. Thompson, G. W. Auner, T. S. Zheleva, K. A. Jones, S. J. Simko, and J. N. Hilfiker, ”Deposition factors and band gap of zinc-blende AlN,” J. Appl. Phys. 89, 3331–3336 (2001).