Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Semi-Huber quadratic function and comparative study of some MRFs for Bayesian image restoration

J. I. De la Rosa, J. Villa-Hernández, E. González-Ramírez, E. De la Rosa M., O. Gutiérrez, C. Olvera-Olvera, R. Castañeda-Miranda, G. Fleury


The present work introduces an alternative method to deal with digital image restoration into a Bayesian framework, particularly, the use of a new half-quadratic function is proposed which performance is satisfactory compared with respect to some other functions in existing literature. The bayesian methodology is based on the prior knowledge of some information that allows an efficient modelling of the image acquisition process. The edge preservation of objects into the image while smoothing noise is necessary in an adequate model. Thus, we use a convexity criteria given by a semi-Huber function to obtain adequate weighting of the cost functions (half-quadratic) to be minimized. The principal objective when using Bayesian methods based on the Markov Random Fields (MRF) in the context of image processing is to eliminate those effects caused by the excessive smoothness on the reconstruction process of image which are rich in contours or edges. A comparison between the new introduced scheme and other three existing schemes, for the cases of noise filtering and image deblurring, is presented. This collection of implemented methods is inspired of course on the use of MRFs such as the semi-Huber, the generalized Gaussian, the Welch, and Tukey potential functions with granularity control. The obtained results showed a satisfactory performance and the effectiveness of the proposed estimator with respect to other three estimators.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13072]

Full Text: PDF

Citation Details

Cite this article


J. E. Besag, ”Spatial interaction and the statistical analysis of lattice systems,” J. Roy. Stat. Soc. Ser. B Met. 36, 192–236 (1974).

J. E. Besag, ”On the statistical analysis of dirty pictures,” J. Roy. Stat. Soc. Ser. B Met. 48, 259–302 (1986).

S. Geman, and D. Geman, ”Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images,” IEEE T. Pattern Anal. 6, 721–741 (1984).

H. C. Andrews, and B. R. Hunt, Digital image restoration (Prentice- Hall, Inc., New Jersey, 1977).

N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, ”Speckle removal using a maximum-likelihood technique with isoline gray-level regularization,” J. Opt. Soc. Am. A 21, 2283–2291 (2004).

T. F. Chan, S. Esedoglu, and M. Nikolova, ”Algorithms for finding global minimizers of image segmentation and denoising models,” SIAM J. Appl. Math. 66, 1632–1648 (2006).

S. Durand, and M. Nikolova, ”Stability of the minimizers of least squares with a non-convex regularization. Part I: Local behavior,” J. Appl. Math. Optimizat. 53, 185–208 (2006).

S. Durand, and M. Nikolova, ”Stability of the minimizers of least squares with a non-convex regularization. Part II: Global behavior,” J. Appl. Math. Optimizat. 53, 259–277 (2006).

M. Nikolova, Functionals for signal and image reconstruction: properties of their minimizers and applications (Centre de Mathématiques et de Leurs Applications CNRS-UMR 8536, 2006).

M. Nikolova, ”Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares,” Multiscale Model. Simul. 4, 960–991 (2005).

M. Nikolova, and M. Ng, ”Analysis of half-quadratic minimization methods for signal and image recovery,” SIAM J. Sci. Comput. 27, 937–966 (2005).

R. Pan, and S. J. Reeves, ”Efficent Huber-Markov edge-preserving image restoration,” IEEE T. Image Process. 15, 3728–3735 (2006).

C. Bouman, and K. Sauer, ”A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE T. Image Process. 2, 296–310 (1993).

K. Sauer, and C. Bouman, ”Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE T. Nucl. Sci. 39, 1144–1152 (1992).

J. I. De la Rosa, and G. Fleury, ”Bootstrap methods for a measurement estimation problem,” IEEE T. Instrum. Meas. 55, 820–827 (2006).

J. I. De la Rosa, J. J. Villa, and Ma. A. Araiza, ”Markovian random fields and comparison between different convex criteria optimization in image restoration,” in Proceedings to International Conference on Electronics, Communications, and Computers 2007, 1–6 (IEEE-UDLA, Cholula, 2007).

M. Rivera, and J. L. Marroquin, ”Efficent half-quadratic regularization with granularity control,” Image Vision Comput. 21, 345–357 (2003).

M. Rivera, and J. L. Marroquin, ”Half-quadratic cost functions for phase unwrapping,” Opt. Lett. 29, 504–506 (2004).

M. Rivera, ”Robust phase demodulation of interferograms with open or closed fringes,” J. Opt. Soc. Am. A 22, 1170–1175 (2005).

W. Pieczynski, and A.-N. Tebbache, ”Pairwise Markov random fields and segmentation of textured images,” Machine Graph. Vision 9, 705–718 (2000).

J. Lafferty, A. McCallum, and F. Pereira, ”Conditional Random Fields: Probabilistic models for segmenting and labeling sequence data,” in Proceedings to International Conference on Machine Learning 2001, 282–289 (International Machine Learning Society, Williamstown, 2001).

S. Kumar, and H. Martial, ”Discriminative random fields,” Int. J. Comput. Vision 68, 179–201 (2006).

A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T, Darrell ”Hidden conditional random fields,” IEEE T. Pattern Anal. Mach. Intell. 29, 1848–1853 (2007).

D. Benboudjema, and W. Pieczynski, ”Unsupervised statistical segmentation of nonstationary images using triplet Markov fields,” IEEE T. Pattern Anal. Mach. Intell. 29, 1367–1378 (2007).

P. Zhang, M. Li, Y. Wu, L. Gan, M. Liu, F. Wang, and G. Liu, ”Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model,” Pattern Recogn. 45, 4018–4033 (2012).

F. Wang, Y. Wu, Q. Zhang, P. Zhang, M. Li, and Y. Lu, ”Unsupervised change detection on SAR images using triplet Markov field model,” IEEE Geosci. Remote Sens. Lett. 10, 697–701 (2013).

D. Benboudjema, N. Othman, B. Dorizzi, and W. Pieczynski, ”Segmentation d’ images des yeux par champs de markov triplets: Application à la biométrie,” in Proceedings to Colloque GRETSI 2013 (GRETSI, Brest, 2013).

F. Champagnat, and J. Idier, ”A connection between half-quadratic criteria and EM algorithms,” IEEE Signal. Proc. Lett. 11, 709–712 (2004).

P. Ciuciu, and J. Idier, ”A half-quadratic block-coordinate descent method for spectral estimation,” Signal Processing 82, 941–959 (2002).

P. Ciuciu, J. Idier, and J.-F. Giovannelli, ”Regularized estimation of mixed spectra using circular Gibbs-Markov model,” IEEE T. Signal Proces. 49, 2202–2213 (2001).

J.-F. Giovannelli, J. Idier, R. Boubertakh, and A. Herment, ”Unsupervised frequency tracking beyond the Nyquist frequency using Markov chains,” IEEE T. Signal Proces. 50, 2905–2914 (2002).

J. Idier, ”Convex half-quadratic criteria and interacting auxiliary variables for image restoration,” IEEE T. Image Process. 10, 1001–1009 (2001).

D. Geman, and G. Reinolds, ”Constrained restoration and the recovery of discontinuities,” IEEE T. Pattern Anal. Mach. Intell. 14, 367–383 (1992).

D. Geman, and C. Yang, ”Nonlinear image recovery with halfquadratic regularization,” IEEE T. Image Process. 4, 932–946 (1995).

M. Nikolova, and R. Chan, ”The equivalence of half-quadratic minimization and the gradient linearization iteration,” IEEE T. Image Process. 16, 1623–1627 (2007).

C. Labat, and J. Idier, Convergence of truncated half-quadratic algorithms using conjugate gradient (IRCCyN UMR CNRS 6597, 2006).

C. Labat, Algorithmes d’optimisation de critères pénalisés pour la restauration d’images. Application à la déconvolution de trains d’impulsions en imagerie ultrasonore, (Ph.D. Thesis, École Centrale de Nantes, 2006) in French.

A. L. Gibbs, Convergence of Markov Chain Monte Carlo algorithms with applications to image restoration, (Ph.D. Thesis, University of Toronto, 2000).

R. M. Neal, Probabilistic inference using Markov chain Monte Carlo methods (Department of Computer Science, University of Toronto, Technical Report CRG-TR-93-1, 1993).

C. P. Robert, and G. Casella, Monte Carlo Statistical Methods (Second edition, Springer Verlag, New York, 2004).

M. Allain, J. Idier, and Y. Goussard, ”On global and local convergence of half-quadratic algorithms,” IEEE T. Image Process. 15, 1130–1142 (2006).

M. Nikolova, M. K. Ng, and C.-P. Tam, ”Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction,” IEEE T. Image Process. 19, 3073–3088 (2010).

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, ”Image and depth from a conventional camera with a coded aperture,” in Proceedings to SIGGRAPH ’07, 10.1145/1275808.1276464 (ACM, San Diego, 2007).

J. J. Villa, J. I. De la Rosa, G. Miramontes, and J. A. Quiroga, ”Phase recovery from a single fringe pattern using an orientational vector field regularized estimator,” J. Opt. Soc. Am. A 22, 2766–2773 (2005).

P. Perona, and J. Malik, ”Scale-space and edge detection using anisotropic diffusion,” IEEE T. Pattern Anal. Mach. Intell. 12, 629–639 (1990).