Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Methods in reducing surface reflected glint for shipborne above-water remote sensing

S. P. Garaba, O. Zielinski


Surface reflected glint is a curse for ocean color remote sensing from above-water platforms. In calibrated above-water shipborne radiometry,there are several surface reflected glint correction approaches widely implemented. These approaches were developed using radiativetransfer simulations and/or field measurements in different water types, sea states, and cloud conditions. To date no particular surfacereflected glint correction approach has been prescribed in ocean optics standard protocols. Without synoptic inherent optical propertiesto accurately determine apparent optical properties, glint correction is therefore rather qualitative or subjective. There is need to fullytake inventory of uncertainties resulting from such differences. We look at different methods that have been implemented in calibratedshipborne radiometry and how surface reflected glint is corrected for using these available approaches. Field measurements are utilized toassess how the correction approaches perform under clear and overcast skies, we also elucidate on aspects for further improvements.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13058]

Full Text: PDF

Citation Details

Cite this article


A. Morel, ”In-water and remote measurements of ocean color,” Bound.-Layer Meteorol. 18, 177–201 (1980).

J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. Carder, Z. P. Lee, R. G. Steward, et al., Above-Water Radiance and Remote Sensing Reflectance Measurement and Analysis Protocols (Goddard Space Flight Space Center, Greenbelt, 2003).

S. P. Garaba, J. Schulz, M. R. Wernand, and O. Zielinski, ”Sunglint detection for unmanned and automated platforms,” Sensors 12, 12545–12561 (2012).

S. Kay, J. Hedley, and S. Lavender, ”Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: a Review of Methods for Visible and Near-Infrared Wavelengths,” Remote Sens. 1, 697–730 (2009).

G. K. Moore, ”Satellite remote sensing of water turbidity / Sonde de télémesure par satellite de la turbidité de l’eau,” Hydrolog. Sci. J. 25, 407–421 (1980).

H. Zhang and M. Wang, ”Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Ra. 111, 492–506 (2010).

J. S. Barton, and M. F. Jasinski, ”Sensitivity of depth-integrated satellite lidar to subaqueous scattering,” Remote Sens. 3, 1492–1515 (2011).

C. H. Whitlock, D. S. Bartlett, and E. A. Gurganus, ”Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols,” Geophys. Res. Lett. 9, 719–722 (1982).

R. Frouin, M. Schwindling, and P.-Y. Deschamps, ”Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).

G. O. Marmorino, and G. B. Smith, ”Bright and dark ocean whitecaps observed in the infrared,” Geophys. Res. Lett. 32, L11604 (2005).

K. D. Moore, K. J. Voss, and H. R. Gordon, ”Spectral reflectance of whitecaps: Instrumentation, calibration, and performance in coastal Waters,” J. Atmos. Ocean. Technol. 15, 496–509 (1998).

Z. Lee, Y.-H. Ahn, C. Mobley, and R. Arnone, ”Removal of surfacereflected light for the measurement of remote-sensing reflectance from an above-surface platform,” Opt. Express 18, 26313–26324 (2010).

B. Fougnie, R. Frouin, P. Lecomte, and P.-Y. Deschamps, ”Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance,” Appl. Opt. 38, 3844–3856 (1999).

C. D. Mobley, ”Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, ”Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51, 1167–1179 (2006).

T. Harmel, A. Gilerson, A. Tonizzo, J. Chowdhary, A. Weidemann, R. Arnone, and S. Ahmed, ”Polarization impacts on the waterleaving radiance retrieval from above-water radiometric measurements,” Appl. Opt. 51, 8324–8340 (2012).

P.-Y. Deschamps, B. Fougnie, R. Frouin, P. Lecomte, and C. Verwaerde, ”SIMBAD: A field radiometer for satellite ocean-color validation,” Appl. Opt. 43, 4055–4069 (2004).

D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, ”Remote-sensing reflectance determinations in the coastal ocean environment: Impact of instrumental characteristics and environmental variability,” Appl. Opt. 39, 456–469 (2000).

S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, ”An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol. 19, 486–515 (2002).

R. W. Gould, R. A. Arnone, and M. Sydor, ”Absorption, scattering, and, remote-sensing reflectance relationships in coastal waters: Testing a new inversion algorithm,” J. Coast. Res. 17, 328–341 (2001).

S. P. Garaba, M. R. Wernand, and O. Zielinski, ”Quality control of automated hyperspectral remote sensing measurements from a seaborne platform,” Ocean Sci. Discuss. 8, 613–638 (2011).

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, et al., ”AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).

M. Hieronymi, ”Monte Carlo code for the study of the dynamic light field at the wavy atmosphere-ocean interface,” J. Europ. Opt. Soc. Rap. Public. 8, 13039 (2013).

C. Moore, A. Barnard, P. Fietzek, M. R. Lewis, H. M. Sosik, S. White, and O. Zielinski, ”Optical tools for ocean monitoring and research,” Ocean Sci. 5, 661–684 (2009).

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, ”In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).

G. Zibordi, J. F. Berthon, F. Mélin, and D. D’Alimonte, ”Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset,” Remote Sens. Environ. 115, 2104–2115 (2011).

R. M. Pope and E. S. Fry, ”Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).

R. M. Pope, Optical absorption of pure water and sea water using the integrating cavity absorption meter (PhD Thesis, Texas A&M University, 1993).

C. Cox and W. Munk, ”Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).

A. Hommersom, S. Kratzer, M. Laanen, I. Ansko, M. Ligi, M. Bresciani, C. Giardino, et al., ”Intercomparison in the field between the new WISP-3 and other radiometers (TriOS Ramses, ASD FieldSpec, and TACCS),” J. Appl. Remote Sens. 6, 063615–063615 (2012).

Z. Lee, K. L. Carder, and R. A. Arnone, ”Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).

Z. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, ”Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, ”A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, ”Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).

M. R. Wernand, ”Guidelines for (ship-borne) auto-monitoring of coastal and ocean colour,” in Proceedings of Ocean Optics XVI, 13 (The Oceanography Society, Santa Fe, 2002).

Z. Lee, N. Pahlevan, Y.-H. Ahn, S. Greb, and D. O’Donnell, ”Robust approach to directly measuring water-leaving radiance in the field,” Appl. Opt. 52, 1693–1701 (2013).

T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, ”Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ. 133, 85–89 (2013).

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, ”Atmospheric Correction of Satellite Ocean Color Imagery: The Black Pixel Assumption,” Appl. Opt. 39, 3582–3591 (2000).

S. P. Garaba and O. Zielinski, ”Comparison of remote sensing reflectance from above-water and in-water measurements west of Greenland, Labrador Sea, Denmark Strait, and west of Iceland,” Opt. Express 21, 15938–15950 (2013).

P. Kowalczuk, M. J. Durako, W. J. Cooper, D. Wells, and J. J. Souza, ”Comparison of radiometric quantities measured in water, above water and derived from seaWiFS imagery in the South Atlantic Bight, North Carolina, USA,” Cont. Shelf Res. 26, 2433–2453 (2006).

I. Reda, and A. Andreas, ”Solar position algorithm for solar radiation applications,” Sol. Energy 76, 577–589 (2004).