Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Coherent excitation of a nonlinear microcavity

J. Oden, S. Trebaol, P. Delaye, N. Dubreuil


Coherent excitation of a nonlinear semiconductor microcavity is theoretically reported. It intends to counterbalance the frequency drift ofthe cavity resonance driven by the nonlinear refractive effects, which causes a limitation in the energy coupling efficiency of an input pulseinto the cavity resonance. We show that exciting such a nonlinear microcavity with tailored chirped pulses allows to maintain the benefit oflight localization and to further enhance light-matter interactions, opening the way to the realization of highly efficient nonlinear devices.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13046]

Full Text: PDF

Citation Details

Cite this article


M. Soljacic, and J. D. Joannopoulos, ”Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211 (2004).

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, ”Alloptical switches on a silicon chip realized using photonic crystal nanocavities,” App. Phys. Lett. 87, 151112 (2005).

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, ”Ultrafast dynamics of the thirdorder nonlinear response in a two-dimensional InP-based photonic crystal,” App. Phys. Lett. 85, 1880 (2004).

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W Wong, ”Ultrafast all-optical modulation in GaAs photonic crystal cavities,” App. Phys. Lett. 94, 021111 (2009).

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, ”Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photon. 4, 477 (2010).

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, G. Lehoucq, and A. De Rossi, ”Kerr-induced all-optical switching in a GaInP photonic crystal Fabry-Perot resonator” Opt. Express 20, 8524 (2012).

Z. K. Ioannidis, P. M. Radmore, and I. P. Giles, ”Dynamic response of an all-fiber ring resonator,” Opt. Lett. 13, 422 (1988).

Y. Dumeige, S. Trebaol, L. Ghi¸sa, T. K. N. Nguyên, H. Tavernier, and P. Féron, ”Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25, 2073 (2008).

D. Vujic, and S. John, ”Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).

A. M. Weiner, ”Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000).

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. A. Bouchene, and B. Girard, ”Observation of Coherent Transients in Ultrashort Chirped Excitation of an Undamped Two-Level System,” Phys. Rev. Lett. 87, 033001 (2001).

D. Meshulach, and Y. Silberberg, ”Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239 (1998).

S. Sandhu, M. Povinelli, and S. Fan, ”Enhancing optical switching with coherent control,” App. Phys. Lett. 96, 231108 (2010).

P. T. Kristensen, M. Heuck, and J. Mork, ”Optimal switching using coherent control,” App. Phys. Lett. 102, 041107 (2013).

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984).

P. Barclay, K. Srinivasan, and O. Painter, ”Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801 (2005).

D. Prelewitz, and T. Brown, ”Optical limiting and free-carrier dynamics in a periodic semiconductor waveguide,” J. Opt. Soc. Am. B 11, 304–312 (1994).

M. Heuck, P.T. Kristensen, and J. Mørk, ”Energy-bandwidth tradeoff in all-optical photonic crystal microcavity switches,” Opt. Express 19, 18410 (2011).

A. Baron, N. Dubreuil, P. Delaye, R. Frey, and G. P. Agrawal, ”Raman amplification of optical pulses in silicon nanowaveguides: Impact of spectral broadening of pump pulses,” J. Europ. Opt. Soc. Rap. Public. 6, 11030 (2011).