Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Synthetic adjacent pulse repetition interval length method to solve integer ambiguity problem: theoretical analysis

D. Wei, K. Takamasu, H. Matsumoto

Abstract


This paper describes a novel approach for realizing femtosecond optical frequency comb (FOFC)-based length measurement. This approach is based on the analogy between the phase unwrapping problem and the integer ambiguity problem. Because the conventional synthetic wavelength method can solve the former, we investigated the possibility of using a synthetic adjacent pulse repetition interval length method to solve the latter. The results of theoretical analyses and numerical investigations show the feasibility of the proposed method. Our results should contribute toward the further development of FOFC-based length measurement methods.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13016]

Full Text: PDF

Citation Details


Cite this article

References


J. Ye, and S. T. Cundiff, Femtosecond optical frequency comb : principle, operation, and applications (Springer, New York, NY, 2005).

W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, ”The development and application of femtosecond laser systems,” Opt. Express 20, 6989–7001 (2012).

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, ”Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express 17, 7011–7018 (2009).

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, ”Theoretical Analysis of Length Measurement Using Interference of Multiple Pulse Trains of a Femtosecond Optical Frequency Comb,” Jpn. J. Appl. Phys. 50, 022701 (2011).

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, ”Absolute Measurement of Baselines up to 403 m Using Heterodyne Temporal Coherence Interferometer with Optical Frequency Comb,” Appl. Phys. Express 5, 046601 (2012).

C. Narin, T. Satoru, T. Kiyoshi, and M. Hirokazu, ”A new method for high-accuracy gauge block measurement using 2 GHz repetition mode of a mode-locked fiber laser,” Meas. Sci. Technol. 23, 054003 (2012).

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, ”Space position measurement using long-path heterodyne interferometer with optical frequency comb,” Opt. Express 20, 2725–2732 (2012).

J. Ye, ”Absolute measurement of a long, arbitrary distance to less than anoptical fringe,” Opt. Lett. 29, 1153–1155 (2004).

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, ”High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34, 1982–1984 (2009).

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, ”Rapid and precise absolute distance measurements at long range,” Nat. Photon. 3, 351–356 (2009).

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, ”Time-of-flight measurement with femtosecond light pulses,” Nat. Photon. 4, 716–720 (2010).

K. Minoshima, and H. Matsumoto, ”High-Accuracy Measurement of 240-m Distance in an Optical Tunnel by use of a Compact Femtosecond Laser,” Appl. Optics 39, 5512–5517 (2000).

T. Yasui, K. Minoshima, and H. Matsumoto, ”Three-Dimensional Shape Measurement of a Diffusing Surface by Use of a Femtosecond Amplifying Optical Kerr Gate,” Appl. Optics 39, 65–71 (2000).

Y. Yamaoka, L. Zeng, K. Minoshima, and H. Matsumoto, ”Measurements and Numerical Analysis for Femtosecond Pulse Deformations After Propagation of Hundreds of Meters in Air with Water- Vapor Absorption Lines,” Appl. Optics 43, 5523–5530 (2004).

Y. Bitou, T. R. Schibli, and K. Minoshima, ”Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator,” Opt. Express 14, 644–654 (2006).

M. Kajima, and H. Matsumoto, ”Picometer positioning system based on a zoominginterferometer using a femtosecond optical comb,” Opt. Express 16, 1497–1506 (2008).

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, ”Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302 (2009).

S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, ”A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17, 17324–17337 (2009).

C. R. Tilford, ”Analytical procedure for determining lengths from fractional fringes,” Appl. Optics 16, 1857–1860 (1977).

G. L. Bourdet, and A. G. Orszag, ”Absolute distance measurements by CO2 laser multiwavelength interferometry,” Appl. Optics 18, 225–227 (1979).

M. K. Kim, Digital holographic microscopy : principles, techniques, and applications (Springer, New York, 2011).

R. Dändliker, B. Ineichen, and F. M. Mottier, ”High resolution hologram interferometry by electronic phase measurement,” Opt. Commun. 9, 412–416 (1973).

M. Takeda, H. Ina, and S. Kobayashi, ”Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).

J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, ”Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses,” Appl. Optics 13, 2693–2703 (1974).

H. Matsumoto, ”Infrared He-Xe laser interferometry for measuring length,” Appl. Optics 20, 231–234 (1981).

H. Matsumoto, ”Synthetic interferometric distance-measuring system using a CO2 laser,” Appl. Optics 25, 493–498 (1986).

Y. Shuko, O. Jun, I. Shigeo, S. Katuo, M. Hirokazu, and S. Norihito, ”Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233 (1999).

J. Gass, A. Dakoff, and M. K. Kim, ”Phase imaging without 2? ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, ”Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).

A. Khmaladze, R. L. Matz, C. Zhang, T. Wang, M. M. Banaszak Holl, and Z. Chen, ”Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells,” Opt. Lett. 36, 912–914 (2011).

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, ”Time-offlight method using multiple pulse train interference as a time recorder,” Opt. Express 19, 4881–4889 (2011).

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, et al., ”A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18, 1667–1676 (2010).