Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites

N. Faraji, W. Mahmood Mat Younus, A. Kharazmi, E. Saion, M. Shahmiri, N. Tamchek


Silver/polyvinyl alcohol (PVA) nanocomposites are prepared via quick precipitation method, using hydrazine as a reducing agent. Preparing of silver/PVA nanocomposites by this method is done for the first time. The samples are characterized by Uv-Visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM). Nonlinear optical properties are carried out by Z-scan technique using a blue CW laser beam operated at wavelength 405 nm. It is shown that the synthesized samples have negative nonlinear refractive index and the magnitude is in the order of 10^-8. The nonlinear refractive index increases as amount of reducing agent increases.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12040]

Full Text: PDF

Citation Details

Cite this article


I. U. G. Gogotsi, Nanomaterials handbook (CRC/Taylor & Francis, Boca Raton, 2006).

V. K. Sharma, R. A. Yngard, and Y. Lin, "Silver nanoparticles: Green synthesis and their antimicrobial activities," Adv. Colloid. Interfac. 145, 83-96 (2009).

Z. S. Pillai, and P. V. Kamat, "What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method?," J. Phys. Chem. B 108, 945-951 (2003).

Y. Sun, and Y. Xia, "Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process," Adv. Mater. 14, 833-837 (2002).

P. K. Khanna, N. Singh, S. Charan, V. V. V. S. Subbarao, R. Gokhale, and U. P. Mulik, "Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method," Mater. Chem. Phys. 93, 117-121 (2005).

Z. H. Mbhele, M. G. Salemane, C. G. C. E. van Sittert, J. M. Nedeljkovi´c, V. Djokovi´c, and A. S. Luyt, "Fabrication and Characterization of Silver-Polyvinyl Alcohol Nanocomposites," Chem. Mater. 15, 5019-5024 (2003).

R. Zeng, M. Z. Rong, M. Q. Zhang, H. C. Liang, and H. M. Zeng, "Laser ablation of polymer-based silver nanocomposites," Appl. Surf. Sci. 187, 239-247 (2002).

Z. Zhang, and M. Han, "One-step preparation of size-selected and well-dispersed silver nanocrystals in polyacrylonitrile by simultaneous reduction and polymerization," J. Mater. Chem. 13, 641-643 (2003).

H. Liu, X. Ge, Y. Zhu, X. Xu, Z. Zhang, and M. Zhang, "Synthesis and characterization of polyacrylamide-nickel amorphous nanocomposites by gamma-irradiation," Mater. Lett. 46, 205-208 (2000).

A. V. Firth, S. W. Haggata, P. K. Khanna, S. J. Williams, J. W. Allen, S. W. Magennis, I. D. W. Samuel, and D. J. Cole-Hamilton, "Production and luminescent properties of CdSe and CdS nanoparticlepolymer composites," J. Lumin. 109, 163-172 (2004).

J. Bai, Y. Li, L. Sun, C. Zhang, and Q. Yang, "Bicomponent AgCl/PVP nanofibre fabricated by electrospinning with gel-sol method," B. Mater. Sci. 32, 161-164 (2009).

D. F. Eaton, "Nonlinear Optical Materials," Science 253, 281-287 (1991).

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D Appl. Phys. 34, 1602 (2001).

H. Fei, Z. Wei, Q. Yang, Y. Che, Y. Shen, X. Fu, and L. Qiu, "Lowpower phase conjugation in push pull azobenzene compounds," Opt. Lett. 20, 1518-1520 (1995).

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Elect. 26, 760-769 (1990).

R. L. Sutherland, "Effects of multiple internal sample reflections on nonlinear refractive Z-scan measurements," Appl. Optics 33, 5576-5584 (1994).

T. Jia, T. He, P. Li, Y. Mo, and Y. Cui, "A study of the thermalinduced nonlinearity of Au and Ag colloids prepared by the chemical reaction method," Opt. Laser Technol. 40, 936-940 (2008).

K. Sendhil, C. Vijayan, and M. P. Kothiyal, "Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin," Opt. Laser Technol. 38, 512-515 (2006).

J. Wang, and W. J. Blau, "Inorganic and hybrid nanostructures for optical limiting," J. Opt. A-Pure Appl. Op. 11, 024001 (2009).

Q. W. Song, C. Zhang, R. Gross, and R. Birge, "Optical limiting by chemically enhanced bacteriorhodopsin films," Opt. Lett. 18, 775-777 (1993).

H.M. Zidan, "Effect of AgNO3 filling and UV-irradiation on the structure and morphology of PVA films," Polym. Test. 18, 449-461 (1999).

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids," Opt. Commun. 240, 437-448 (2004).

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).

H. Manaa, A. Tuhl, J. Samuel, A. Al-Mulla, N. A. Al-Awadi, and S. Makhseed, "Photophysical and nonlinear optical properties of zincphthalocyanines with peripheral substitutions," Opt. Commun. 284, 450-454 (2011).

Q. W. Song, C. Zhang, R. B. Gross, and R. R. Birge, "The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin," Opt. Commun. 112, 296-301 (1994).

S. J. Mathews, S. C. Kumar, L. Giribabu, and S. V. Rao, "Large third-order optical nonlinearity and optical limiting in symmetric and unsymmetrical phthalocyanines studied using Z-scan," Opt. Commun. 280, 206-212 (2007).

T. He, and C. Wang, "The study on the nonlinear optical response of Sudan I," Opt. Commun. 281, 4121-4125 (2008).

E. Shahriari, W. M. Mat Yunus, K. Naghavi, and Z. A. Talib, "Effect of concentration and particle size on nonlinearity of Au nano-fluid prepared by g (60Co) radiation," Opt. Commun. 283, 1929-1932 (2010).