Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

UV-curable glassy material for the manufacture of bulk and nano-structured elements

R. Gvishi, G. Strum, A. Englander


An ultra violet (UV) -cured glassy material with less than 30% organic residues was fabricated by the fast sol-gel method. The material presents high thermal stability, good optical quality and high adhesive strength. It is suitable for optical bonding and, for manufacture of optical elements and micro-structured optical devices. Either soft-lithography or photo-lithography may be used for manufacture of the material while its curing can be thermal (few hours) or UV (few seconds). In this work we present the technology to fabricate optical elements at scales spanning the sub-micron to centimeter range. This technology enables mass-production of optical elements at low cost.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12002]

Full Text: PDF

Citation Details

Cite this article


W-D. Li, and S. Y. Chou, "Solar-blind deep-UV band-pass filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography," Opt. Express 18, 931 (2010).

B. Cui, Z. Yu, H. Ge, S. Y. Chou, "Large area 50 nm period grating by multiple nanoimprint lithography and spatial frequency doubling," Appl. Phys. Lett. 90, 043118 (2007).

J. Haisma, "Nanoimprint lithography combined with direct bonding: A possibility to construct quantum dots, wires, and planes in vertical cascade," Appl. Phys. Lett. 89, 244105 (2006).

A. A. Letailleur, K. Nomenyo, S. Mc Murtry, E. Barthel, E. Sondergard, and G. Lerondel, "High order symmetry interference lithography based nanoimprint," J. Appl. Phys. 109, 016104 (2011).

J. Gong, D. J. Lipomi, J. Deng, Z. Nie, X. Chen, N. X. Randall, R. Nair, and G. M. Whitesides, "Micro- and Nanopatterning of Inorganic and Polymeric Substrates by Indentation Lithography," Nano Lett. 10, 2702-2708 (2010).

B. D Gates, Q. B. Xu, M. Stewart, D. Ryan, C. G. Wilson, and G. M. Whitesides, "New approach for nanofabrication: Molding, printing, and other techniques," Chem. Rev. 105, 1171 (2005).

S. Elhadj, R. M. Rioux, M. D. Dickey, J. J. DeYoreo, and G. M. Whitesides, "Subnanometer Replica Molding of Molecular Steps on Ionic Crystals," Nano Lett. 10, 4140-4145 (2010).

C. J. Brinker, and G. W. Scherer, Sol-Gel Science (Academic Press, San Diego, 1990).

S. Sakka, Handbook of sol-gel science and technology: processing, characterization and applications (Kluwer Academic Publisher, New York 2005).

A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, C. C. Righini, and M. Ferrari, "Sol-gel-derived photonic structures: fabrication, assessment, and application," J. Sol.-Gel. Sci. Techn. 60 (3), 408-425 (2011).

G. Brusatine, and G. D. Giustina, "Hybrid organic-inorganic sol-gel materials for micro and nanofabrication," J. Sol.-Gel. Sci. Techn. 60 (3), 299 (2011).

X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, "Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique," J. Sol.-Gel. Sci. Techn. 60, 71-80 (2011).

A. Schleunitz, C. Spreu, T. Makela, T. Haatainen, A. Klukowska, and H. Schift, "Hybrid working stamps for high speed roll-to-roll nanoreplication with molded sol-gel relief on a metal backbone," Microelectron. Eng. 88, 2113-2116 (2011).

G. Philipp, and H. Schmidt, "New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process," J. Non-Cryst. Solids 63, 283-292 (1984).

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Fronhlich, R. Houbertz, and M. Popall, "New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic-organic hybrid) polymers," Opt. Mater. 21, 475-483 (2002).

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J. U. Park, L. Fronhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wachter, and A. Brauer, "Inorganic-organic hybrid materials for application in optical devices," Thin Solid Film 442, 194-200 (2003).

U. Hass, A. Haas, V. Stazinger, H. Pichler, G. Leising, G. Jakopic, B. Stadlober, R. Houbertz, G. Domann, and A. Schmitt, "Hybrid polymers as tunable and directly-patternable gate dielectrics in organic thin-film transistors," Phys. Rev. B 73, 235339 (2006).

X. M. Du, T. Tousam, L. Degachi, J. L. Guilbault, M. P. Andrews, and S. I. Najafi, "Sol-gel waveguide fabrication parameters: an experimental investigation," Opt. Eng. 37, 1101-1104 (1998).

P. Gupta, P. P. Markowicz, K. Baba, J. O'reilly, M. Samoc, and P. N. Prasad, "DNA-Ormocer based biocomposite for fabrication of photonic structures," Appl. Phys. Lett. 88, 213109 (2006).

A. D. Gianni, R. Bongiovanni, S. Turri, F. Defloarian, G. Malucelli, and G. Rizza, "UV-Cured Coatings Based on Waterborne Resins and SiO2 Nanoparticles," J. Coat. Technol. Res. 6 (2) 177-185 (2009).

C.-C. Chang, L.-P. Cheng, F.-H. Huang, C.-Y. Lin, C.-F. Hsieh, and W.-H. Wang, "Preparation and characterization of TiO2 hybrid sol for UV-curable high-refractive-index organic-inorganic hybrid thin films," J. Sol.-Gel. Sci. Techn. 55, 199 (2010).

C. C. Barghorn, C. Belon, and A. Chemtob, "Polymerization of Hybrid Sol-Gel Materials Catalyzed by Photoacids Generation," J. Photopolym. Sci. Tec. 23, 129-134 (2010).

M. Pokrass, Z. Burshtein, and R. Gvishi, "Thermo-optic coefficient in some hybrid organic/inorganic fast sol-gel glasses," Opt. Mater. 32, 975 (2010).

R. Gvishi, "Fast sol-gel technology: from fabrication to applications," J. Sol.-Gel. Sci. Techn. 50, 241 (2009).

M. Pokrass, G. Bar, I. Gozman, and R. Gvishi, "Infrared and X-ray photoelectron spectroscopy studies of hybrid organic/inorganic fast sol-gel glasses," Opt. Mater. 34, 341 (2011).

R. Gvishi, M. Pokrass, and G. Strum, "Optical bonding with fast sol-gel," J. Europ. Opt. Soc. Rap. Public. 4, 09026 (2009).