Journal of the European Optical Society - Rapid publications, Vol 5 (2010)

Wavefront compensation method using novel index in holographic data storage

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, N. Shimidzu


Photopolymer media that uses holographic data storage generally causes volume shrinkage. This volume shrinkage distorts the recorded interference fringes. We propose an adaptive optics using novel index to compensate this distortion. The SNR value is improved from 2.1 dB to 3.4 dB in the worst part of a reproduced image and the peak intensity and the full width of the half maximum of an angle are improved by 6% and 10%, respectively. These results prove that adaptive optics using this novel index worked effectively.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2010.10036s]

Full Text: PDF

Citation Details

Cite this article


L. Dhar, M. Schnoes, T. Wysocki, H. Bair, M. Schnoes, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms" Appl. Phys. Lett. 73, 1337-1339 (1998).

L. Dhar, A. Hale, H. Katz, M. Schilling, M. Schnoes, and F. Schilling, "Recording media that exhibit high dynamic range for digital holographic data storage" Opt. Lett. 24, 487-489 (1999).

Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, "Low angular distortion due to shrinkage after fixing in new holographic recording material" Proc. SPIE 6620, 66201H-66201H-8 (2007).

A. Zlotnik, S. Ben-Yaish, and Z. Zalevsky, "Extending the depth of focus for enhanced three-dimensional imaging and profilometry: an overview" Appl. Opt. 48, H105-H112 (2009).

P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, "Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms" Opt. Lett. 34, 2787-2780 (2009).

M. Paturzo, and P. Ferraro, "Creating an extended focus image of a tilted object in Fourier digital holography" Opt. Express 17, 20546-20552 (2009).

T. Muroi, N. Kinoshita, N. Ishii, K. Kamijo, and N. Shimidzu, "Optical compensation of distorted data image caused by interference fringe distortion in holographic data storage" Appl. Opt. 48, 3681- 3690 (2009).

G. Barbastathis, and D. Psaltis, "Volume holographic multiplexing methods" in Holographic Data Storage, H. Coufal, D. Psaltis, and G. Sincerbox, eds., 21-62 (Springer-Verlag, Berlin, 2000).

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser" Jpn. J. Appl. Phys. 45, 1297-1304 (2006).

G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jefferson, "Noise reduction of page-oriented data storage by inverse filtering during recording" Opt. Lett. 23, 289-291 (1998).

D. Woods, and K. Malang, "Micro-positioning movement of holographic data storage system components" U. S. Patent US7116626 (2006).

N. Ishii, N. Kinoshita, T. Muroi, K. Kamijo, and N. Shimidzu, "Method of phase compensation for holographic data storage" Jpn. J. Appl. Phys. 46, 3862-3866 (2007).