Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

A method to remotely measure temperature change in a lithium niobate crystal using birefringence

D. M. Sando, E. Jaatinen


We present a non-contact method of determining temperature change in a lithium niobate crystal. The technique has the advantage of being simple to implement and offers a precision at least as good as conventional temperature measurement methods over large ranges (~200K). A novel application of this technique involves measuring temperature in different regions of the crystal simultaneously, which could be useful for determining stresses and heat diffusion parameters. The technique could be successfully applied to monitor crystal temperature for thermal fixing of holograms or related applications.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09011]

Full Text: PDF

Citation Details

Cite this article


J. Ashley, M.-P. Bernal, G. Burr, H. Coufal, H. Guenther, J. Hoffnagle, C. Jefferson, B. Marcus, R. Macfarlane, R. Shelby, and G. Sincerbox, "Holographic Data Storage" IBM J. Res. Dev. 44, 341-368 (2000).

Y. Kawata, H. Ueki, Y. Hashimoto, and S. Kawata, "Threedimensional optical memory with a photorefractive crystal" Appl. Optics 34, 4105 (1995).

D. Staebler, W. Burke, W. Phillips, and J. Amodei, "Multiple Storage and Erasure of fixed holograms in Fe doped LiNbO3" Appl. Phys. Lett. 26, 182-184 (1975).

C. Hsieh, S. Lin, K. Hsu, T. Hsieh, A. Chiou, and J. Hong, "Optimal conditions for thermal fixing of volume holograms in Fe:LiNbO3 crystals" Appl. Optics 38, 6141-6151 (1999).

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Kratzig, "Origin of thermal fixing in photorefractive lithium niobate crystals" Phys. Rev. B 56, 1225-1235 (1997).

D. Staebler and J. Amodei, "Thermally fixed holograms in LiNbO3" Ferroelectrics 3, 107-113 (1972).

A. Medez and L. Arizmendi, "Maximum diffraction efficiency of fixed holograms in lithium niobate" Opt. Mater. 10, 55 (1998).

V. Gaba, D. Sugak, and I. Kravchuk, "On the possible application of LiNbO3 single crystals as temperature indicators on the base of their temperature dependencies of birefringence", in Optics and Nonlinear Optics of Liquid Crystalline Compounds pp. 321-324 (SPIE, 1996).

G. Chartier, Introduction to optics (Springer, 2005).

K. Wong (ed.), Properties of lithium niobate (Institute of Engineering and Technology, 2002).

Y. Kim and R. Smith, "Thermal Expansion of Lithium Tantalate and Lithium Niobate Single Crystals" J. Appl. Phys. 40, 4637-4641 (1969).

L. Moretti, M. Iodice, F. Della Corte, and I. Rendina, "Temperature dependencies of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions" J. Appl. Phys. 98, 036101-05 (2005).

F. Chau, H. Shang, C. Soh, and Y. Hung, "Determination of fractional fringe orders in holographic interferometry using polarization phase shifting" Opt. Laser Technol. 25, 371-375 (1993).

U. Schlarb and K. Betzler, "Refractive Indices of Lithium Niobate as a Function of Temperature, Wavelength, and Composition: A Generalized Fit" Phys. Rev. B 48, 15613-15620 (1993).

A. Ashkin, G. Boyd, J. Dziedzic, R. Smith, A. Ballman, J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3" Appl. Phys. Lett. 9, 72-74 (1966).

F. Zhao, H. Zhou, Z. Wu, F. Yu, and D. McMillen, "Temperature dependence of light-induced scattering in a Ce:Fe:LiNbO3 photorefractive crystal" Opt. Eng. 35, 1985-1992 (1996).

F. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate" Opt. Lett. 18, 915-917 (1993).