Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

Prospects for poor-man's cloaking with low-contrast all-dielectric optical elements

N. A. Mortensen, O. Sigmund, O. Breinbjerg

Abstract


We discuss the prospects for low-contrast all-dielectric cloaking and offer a simple picture illustrating the basic obstacle for perfect cloaking without materials with an effective double-negative response. However, the same simple picture also gives directions for less perfect designs allowing for planar transmitted fields, but at the prize of phase-slips which can only be eliminated at well-defined frequencies where the phase-slip amounts to a multiple of 2pi. As a particular example, we consider assemblies of all-dielectric Luneburg lenses forming a porous structure allowing for hiding objects inside the pores, independently on the polarization of the incident field. Cloaking must in general be realized with metamaterials realized through sub-wavelength structures, i.e. Lambda\ll lambda with Lambda being the period and lambda the free-space wavelength. Interestingly, cloaking-like operations with Luneburg-lens arrays perform in the opposite limit with Lambda\gg lambda.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09008]

Full Text: PDF

Citation Details


Cite this article

References


J. B. Pendry and D. R. Smith, "Reversing light with negative refraction" Phys. Today 57, 37-43 (2004).

V. G. Veselago, "Electrodynamics of substances with simulataneously negative values of e and m." Sov. Phys. Uspekhi-USSR 10, 509 (1968).

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields" Science 312, 1780 - 1782 (2006).

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science 314, 977-980 (2006).

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap" Phys. Rev. B 62, 10696-10705 (2000).

D. P. Gaillot, C. Croenne, and D. Lippens, "An all-dielectric route for terahertz cloaking" Opt. Express 16, 3986-3992 (2008).

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations" Phys. Rev. Lett. 99, 113903 (2007).

M. Yan, Z. C. Ruan, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible" Phys. Rev. Lett. 99, 233901 (2007).

R. K. Lneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964).

A. D. Greenwood and J. M. Jin, "A field picture of wave propagation in inhomogeneous dielectric lenses" IEEE Antennas Propag. 41, 9- 18 (1999).

F. Michel, G. Reidemeister, and S. Ohkubo, "Luneburg lens approach to nuclear rainbow scattering" Phys. Rev. Lett. 89, 152701 (2002).

Y. J. Park, A. Herschlein, and W. Wiesbeck, "A photonic bandgap (PBG) structure for guiding and suppressing surface waves in millimeter-wave antennas" IEEE T. Microw. Theory 49, 1854-1859 (2001).

M. I. Stockman, "Criterion for negative refraction with low optical losses from a fundamental principle of causality" Phys. Rev. Lett. 98, 177404 (2007).

D. X. Wang, H. S. Chen, L. X. Ran, J. T. Huangfu, J. A. Kong, and B. L. Wu, "Reconfigurable cloak for multiple operating frequencies" Appl. Phys. Lett. 93, 043515 (2008).

O. Sigmund, N. A. Mortensen, and O. Breinbjerg (unpublished, 2008).

G. W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form" New J. Phys. 8, 248 (2006).

A. N. Norris, "Acoustic cloaking theory" Proc. R. Soc. A. Eng. Sci. 464, 2411-2434 (2008).