Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells

F. Benabid, P. J. Roberts, F. Couny, P. S. Light

Abstract


We review the recent progress on the understanding of optical guidance mechanisms in hollow-core photonic crystal fibres, and on the quantum and nonlinear optical applications of photonic microcells based on this fibre form. Two classes of hollow-core photonic crystal fibre are identified: one guides via a photonic bandgap and the other guides by virtue of an inhibited coupling between core and cladding mode constituents. For the former fibre type, we explore how the bandgap is formed using a photonic analogue of the tight-binding model and how it is related to the anti-resonant reflection optical waveguide guidance. For the second type of fibre, which can guide over a broad wavelength range, we examine the nature of the inhibited coupling. We describe a technique for the fabrication of photonic microcells that can accommodate vacuum pressures, and we finish by showing the latest results on electromagnetically induced transparency in a rubidium filled hollow-core photonic crystal fibre, the CW-pumped hydrogen Raman laser and the generation of multi-octave spanning stimulated Raman scattering spectral combs.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09004]

Full Text: PDF

Citation Details


Cite this article

References


F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres" Nature 434, 488-491 (2005).

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, J. C. K. T. A. Birks, and R. St. J. Philip, "Low loss (1.7 dB/km) hollow core photonic bandgap fiber" in OFC 2004 (2004).

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber" Science 298, 399-402 (2002).

F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF" Opt. Express 13, 5694 (2005).

F. Couny, P. S. Light, F. Benabid, and P. S. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber" Opt. Commun 263, 28-31 (2006).

S. Ghosh, J. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers" Phys. Rev. Lett. 94, 093902 (2005).

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs" Science, 318, 1118-1121 (2007).

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fibre with a subwavelength air core" Nat. Photon. 1, 115-118 (2007).

P. Yeh and A. Yariv, "Bragg reflection waveguides" Opt. Commun. 19, 427-430 (1976).

P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber" J. Opt. Soc. Am 68, 1196-1201 (1978).

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A Dielectric Omnidirectional Reflector" Science 282, 1679-1682 (1998).

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip" Nat. Photon. 1, 331- 335 (2007).

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures" Electron. Lett. 31, 1941-1943 (1995).

G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, "Hollow core photonic crystal fibers for beam delivery" Opt. Express 12, 1477-1484 (2004).

J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, "Surface modes in air-core photonic band-gap fibers" Opt. Express 12, 1485-1496 (2004).

K. Saitoh, N. Mortensen, and M. Koshiba, "Air-core photonic bandgap fibers: the impact of surface modes" Opt. Express 12, 394-400 (2004).

T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, "Scaling laws and vector effects in bandgap-guiding fibres" Opt. Express 12, 69-74 (2003).

F. Benabid, and P. S. J. Russell, "Hollow-core PCF; progress and prospects," in Proc. SPIE, A. Adibi, S.-Y. Lin, and A. Scherer, eds. 176-190 (SPIE, San Jose, Ca, 2005).

G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. S. J. Russell, "Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling" Opt. Express 14, 3000-3006 (2006).

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, "Identification of Bloch-modes in hollow-core photonic crystal fiber cladding" Opt. Express 15, 325-338 (2007).

P. Yeh, Optical waves in layered media (John Wiley and Sons, New York, 1988).

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. N. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer strucutures" Appl. Phys. Lett. 49, 13-15 (1986).

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. D. Sterke, "Resonances in microstructured optical waveguides" Opt. Express 11, 1243-1251 (2003).

N. M. Litchinister, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides" Opt. Lett. 27, 1320-1323 (2002).

T. A. Birks, G. J. Pearce, and D. M. Bird,"Approximate band structure calculation for photonic bandgap fibres" Opt. Express 14, 9483-9490 (2006).

N. W. Aschcroft and N. D. Mermin, Solid state physics (Saunders College, Philadelphia, PA19105, 1976).

A. W. Snyder and X. H. Zheng, "Optical fibers of arbitrary cross sections" J. Opt. Soc. Am. A 3, 600-609 (1986).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber" Opt. Lett. 22, 961-963 (1997).

J. M. Pottage, D. M. Bird, T. D. Hedley, T. A. Birks, J. C. Knight, P. S. J. Russell, and P. J. Roberts, "Robust photonic band gaps for hollow core guidance in PCF made from high index glass" Opt. Express 11, 2854-2861 (2003).

J. v. Neumann and E. Wigner, Phys. Z. 30, 465 (1929).

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S. G. Chu, and A. Y. Cho, "Observation of an electronic bound state above a potential well" Nature 358, 565-567 (1992).

S. John, "Strong localization of photons in certain disordered dielectric superlattices" Phys. Rev. Lett. 58, 2486-2489 (1987).

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics" Phys. Rev. Lett. 58, 2059-2062 (1987).

A. Argyros and J. Pla, "Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared" Opt. Express 15, 7713-7719 (2007).

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, "Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber" Opt. Lett. 31, 2489-2491 (2006).

P. S. Light, F. Benabid, M. Maric, A. Luiten, and F. Couny, "Electromagnetically Induced Transparency in Rubidium-filled HC-PCF PDMS coated Hollow-Core PCF" Opt. Lett. 32, 1323 (2007).

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber" Phys. Rev. Lett. 97, 023603 (2006).