Journal of the European Optical Society - Rapid publications, Vol 3 (2008)

Polarization sensitivity of optical resonant dipole antennas

H. Fischer, O. J. F. Martin


The polarization sensitivity of optical resonant dipole antennas is investigated numerically using the Green's tensor technique. The electric field-intensity in the feed-gap of the antenna is calculated as function of the polarization of the incident field. A simple analytical model is proposed that matches the numerical data very well. While a very strong polarization sensitivity can be achieved for specific wavelengths, our results also indicate that there are situations where the antenna is not sensitive at all to the polarization. The role played by different plasmon resonances in the system is illustrated.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2008.08018]

Full Text: PDF

Citation Details

Cite this article


C. A. Balanis, Antenna Theory Analysis and Design (John Wiley and Sons, inc., New York, 1997).

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant Optical Antennas" Science 308, 1607-9 (2005).

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino and W. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas" Phys. Rev. Lett. 94, 017402 (2005).

D. P. Fromm, A. Sundaramurthy, P. J. Schuck,. G. Kino and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ¸SBowtie_T Nanoantennas Resonant in the Visible" Nano Lett. 4, 957-961 (2004).

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon Resonances of a Gold Nanostar" Nano Lett. 7, 729 (2007).

H. Wang, D. Brandl, F. Le, P. Nordlander and N. J. Halas, "NanoRice: a hybrid nanostructure" Nano Lett. 6, 827 (2006).

N. F. van Hulst, "Light in chains" Nature 448, 141 (2007).

K. Li, M I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens" Phys. Rev. Lett. 91, 227402-1 (2003).

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel and V. Sandoghdar, "Optical Microscopy via Spectral Modifications of a Nanoantenna" Phys. Rev. Lett. 95, 200801-1 (2005).

P. Anger, P. Bharadwaj and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence" Phys. Rev. Lett. 96, 113002-1 (2006).

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence" Nano Lett. 7, 28-33 (2007).

R. Carminati, J.-J. Greffet, C. Henkel and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle" Opt. Commun. 261, 368_U375 (2006).

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence" Nano Lett. 7, 496 (2007).

J. P. Kottmann, O. J. F. Martin, D. R. Smith and S. Schultz, "Nonregularly shaped plasmon resonant nanoparticles as loclized light sources for near-field microscopy" J. Microscopy 200, 60 (2001).

J. N. Farahani, D. W. Pohl, H.-J. Eisler and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter" Phys. Rev. Lett. 95, 017402 (2005).

E. Cubukcu, E. A. Kort, K. B. Crozier and F. Capasso, "Plasmonic laser antenna" Appl. Phys. Lett. 89, 093120 (2006).

D. R. Matthews, K. Njoh, S. Chappell, R. Errington, P. Smith and H. D. Summers, "Optical antenna arrays in the visible range" Opt. Express 15, 3478 (2007).

M. Paulus, P. Gay-Balmaz and O. J. F. Martin, "Accurate and efficient computation of the Green's tensor for stratified media" Phys. Rev. E 62, 5797 (2000).

M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green's tensor approach" J. Opt. Soc. Am. A 18, 854 (2001).

O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds" Phys. Rev. E 58, 3909 (1998).

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals" Phys. Rev. B 6, 4370 (1972).

J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, inc., USA, 1999).