Journal of the European Optical Society - Rapid publications, Vol 3 (2008)

Optical modelling of a Si-based DBR laser source using a nanocrystal Si-sensitized Er-doped silica rib waveguide in the C-band

C. Ciminelli, P. Frascella, M. N. Armenise

Abstract


The availability of reliable silicon-based laser sources is at the basis of the integration of photonic and microelectronic devices on a single chip with consequent development of wavelength division multiplexing telecommunication systems. A high efficiency Si-based laser source with good stability at room temperature would encourage and push the large scale of integration of electronic and photonic devices within a single chip.
Several techniques have been proposed for generating light with an internal quantum efficiency some order of magnitude greater than that typical of silicon (10-6) by using either electrical or optical pumping. Among them we mention the improvement of some fabrication process steps, reduction of the channels of non-radiative recombination, quantum confinement, the use of silicon nanocrystals (Si-ncs) incorporated in a silica matrix. This last technique is used in combination with Er3+ doping to generate light emission around 1500 nm in silicon, since Er-doped Si-ncs behave as electron-hole pairs trap, and the presence of Er shifts the emission peak to around 1500 nm. In this paper we have pointed out the optical model of a Si-based DBR laser including a Si-ncs Er-doped SiO2 rib waveguide, working at a wavelength in C-band. In particular, after a brief description of the structural and optical properties of the silicon crystals, we report on the model and design of the Er:Si-nc/SiO2 rib waveguide, of the optical cavity and of the Bragg mirrors. Numerical results are in good agreement with the literature.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2008.08017]

Full Text: PDF

Citation Details


Cite this article

References


M.A. Green, J. Zhao, A. Wang, P.J. Reece and M. Gal, "Efficient silicon light-emitting diodes" Nature 412, 805-808 (2001).

W.L. Ng, M.A. Lourenco, R.M. Gwilliam, S. Ledian, G. Shao and K.P. Homewood, "An efficient room-temperature silicon-based lightemitting diode"Nature 410, 192-194 (2001).

G. Franzò, S. Coffa, F. Priolo and C. Spinella, "Mechanism and performance of forward and reverse bias electroluminescence at 1.54 _m from Er-doped Si diodes" J. Appl. Phys. 81, 2784-2793 (1997).

A.G. Cullis, L.T. Canham, and P.D.J. Calcott, "The structural and luminescence properties of porous silicon" Appl. Phys. Rev. 82, 909-965 (1997).

O. Bisi, S. Ossicini and L. Pavesi, "Porous silicon: a quantum sponge structure for silicon based optoelectronic" Surf. Sci. Rep. 264, 1-126 (2000).

A. Irrera, D. Pacifici, M. Miritello, G. Franzò, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano and P.G. Fallica, "Electro-luminescence properties of light emitting devices based on silicon nanocrystals" Physica E 16, 395-399 (2003).

L. Pavesi, L. Dal Negro, G. Mazzoleni, G. Franzò and F. Priolo, "Optical gain in silicon nano-crystals" Nature 408, 440-444 (2000).

G. Franzò, D. Pacifici, V. Vinciguerra, F. Priolo and F. Iacona, "Er3+ ions-Si nanocrystals interactions and their effects on the luminescence properties" Appl. Phys. Lett. 76, 2167-2169 (2000).

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, S. Lai, S. C. Lu and M-J. Tsai, "Room temperature electroluminescence at 1.3 and 1.5 _m from Ge/Si self assembled quantum dots" Appl. Phys. Lett. 83, 2958-2960 (2003).

F. Lucarz and A.J. Kenyon, "Silicon nanocrystals in erbium-doped silica for optical amplifiers" London Communications Symposium, (2003).

K. Imakita, M. Fujii and S. Hayashi, "Spectrally resolved energy transfer from excitons in Si nanocrystals to Er ions" Phys. Rev. B 71, 193301 (2005).

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang and M. Paniccia, "A continuous-wave Raman silicon laser" Nature 433, 725-728 (2005).

R. B. Hammond and R. N. Silver, "Temperature dependence of the exciton lifetime in high-purity silicon" Appl. Phys. 36, 68-71 (1980).

M. A. Tamor and J. P. Wolfe, "Drift and Diffusion of Free Excitons in Si" Phys. Rev. Lett. 44, 1703-1706 (1980).

R. N. Hall, "Electron-Hole Recombination in Germanium" Phys. Rev. 87, 387 (1952).

W. Shockley and W. T Read, "Statistics of the Recombinations of Holes and Electrons" Phys. Rev. 87, 835-842 (1952).

J. D. Cuthbert, "Recombination Kinetics of Excitonic Molecules and Free Excitons in Intrinsic Silicon" Phys. Rev. B 1, 1552-1557 (1970).

F. Iacona, G. Franzò and C. Spinella, "Correlation between luminescence and structural properties of Si Nanocrystals" J. Appl. Phys. 87, 1295-1303 (2000).

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen" Phys. Rev. Lett. 82, 197-200 (1999).

Lee, J. H. Shin and N. Park, "Optical Gain at 1.5 mm in Nanocrystal Si-Sensitized Er-Doped Silica Waveguide Using Top-Pumping 470 nm LEDs" J. Lightwave Technol. 23, 19-25 (2005).

A. Irrera, "Light emitting devices based on silicon nanostructures" Ph. D. Thesis, (2004).

K. L. Shaklee, R. E. Nahaori and L. F. Leheny, "Optical gain in semiconductors" J. Lumin. 7, 284-309 (1973).

H. S. Han, S. Y. Seo and J. H. Shin, "Optical gain at 1.54 _m in erbium-doped silicon nanocluster sensitized waveguide" Appl. Phys. Lett. 79, 4568-4570 (2001).

D. Bedeaux and J. Vlieger, "Optical Properties of Surfaces" Imperial College Press, (2004).

R. A. Soref, J. Schmidtchen and K. Petermann, "Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2" IEEE J. Quantum Elect. 27, 1971-1974 (1991).

S. P. Pogossian, L. Vescan and A. Vonsovici, "The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section" J. Lightwave Technol. 16, 1851-1853 (1998).