Journal of the European Optical Society - Rapid publications, Vol 3 (2008)

Design concepts for broadband high-efficiency DOEs

B. H. Kleemann, M. Seesselberg, J. Ruoff

Abstract


Several design-concepts are presented for so-called efficiency achromatized diffractive optical elements (EA-DOEs) possessing diffraction efficiency larger than 97% over a broad spectral range. We start with tracing two different methods for surface relief profiles well known from the literature: common depth and multilayer EA-DOEs. Successively we present the following new approaches together with design parameters and performance properties: 1) gradient-index EA DOEs, 2) sub-wavelength EA-DOEs, and 3) a so-called cut-and-paste strategy. All designs are based on scalar assumptions and certain necessary dispersion relations of two different materials. The scalar assumption is no real limitation as the minimum zone width of our main application, the correction of chromatic aberrations, is 50 -100 times the wavelength. From aforementioned relations, design parameters as profile heights are derived and the resulting diffraction efficiency can be deduced. Additionally it turns out that the necessary dispersion relation concerning the sub-wavelength EA-DOE is the same as for the common depth EA-DOE. Moreover, for the multilayer EA-DOE we were able to show that if the dispersion relations of the materials can be accurately described by a second order Cauchy series, the efficiency becomes generic and will be the same regardless of which materials are chosen. By proper choice of the materials, all types of EA-DOEs yield thicknesses of 10 - 30 µm which is more than ten times larger than for conventional DOEs. Due to the small refractive index difference of GRIN materials, such EA-DOEs exhibit thicknesses of 90 µm and more. Therefore, it is advisable to look for material combinations which yield thicknesses as small as possible.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2008.08015]

Full Text: PDF

Citation Details


Cite this article

References


T. Stone, N. George, "Hybrid diffractive-refractive lenses and achromats" Appl. Optics 27, 2960-2971 (1988).

R. Brunner, R. Steiner, K. Rudolf, and H. J. Dobschal, "Diffractive- Refractive Hybrid Microscope Objective for 193 nm Inspection Systems" Proc. SPIE 5177, 9-15 (2003).

R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, "New Solution to Realize Complex Optical Systems by a Combination of Diffractive and Refractive Optical Components" Proc. SPIE 5183, 47-55 (2003).

R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. Zibold, "Immersion Mask Inspection with Hybrid Microscopic System at 193 nm" Proc. SPIE 5567, 887-893 (2004).

H. J. Dobschal, "Two examples for the effective use of hybrid optics" EOS Top. Meet. Diffractive Optics, 84-85 (2007).

C. Sauvan, P. Lalanne, and M.-Si L. Lee, "Broadband blazing with artificial dielectrics" Opt. Lett. 29, 1593-1595 (2004).

E. Popov, B. Bozhkov, and M. Neviere, "Almost Perfect Blazing by Photonic Crystal Rod Gratings" Appl. Optics 40, 2417-2422 (2001).

S. M. Ebstein, "Nearly index-matched optics for aspherical, diffractive, and achromatic-phase diffractive elements" Opt. Lett. 21, 1454-1456 (1996).

Y. Arieli, S. Ozeri, and N. Eisenberg, "Design of a diffractive optical element for wide spectral bandwidth" Opt. Lett. 23, 823-824 (1998).

T. Nakai, "Diffractive optical element" European Patent Specification EP 965 864 B1 (1998).

T. Nakai, and H. Ogawa, "Research on multi-layer diffractive optical elements and their application to camera lenses" OSA Tech. Dig. of DOMO Conf., Rochester, 5-7 (2002).

T. Nakai, "Diffractive optical element and optical system having the same" European Patent Specification EP 898 182 B1 (1997).

A. Schilling, K. J. Weible, and H. P. Herzig, "Diffractive structures with high, wavelength independent efficiency" EOS Top. Meet. Dig. Ser. 22, 16-17 (1999).

K. J. Weible, A. Schilling, H. P. Herzig, and D. Lobb, "Achromatization of the diffraction efficiency of diffractive optical elements" Proc. SPIE 3749, 378-379 (1999).

A. Schilling and H. P. Herzig, "Optical System Design Using Microoptics" in Encyclopedia of Optical Engineering, R. G. Driggers, ed., 1830-1842 (Marcel Dekker Inc., New York, 2003).

B. Achtner, F. O. Karutz, M. Pollmann, and M. Seeßelberg, "Videobrille für das Kino unterwegs" Photonik 40, 40-43 (2008).

M. D. Missing and G. Michael Morris, "Diffractive optics applied to eyepieces design" Appl. Optics 34, 2452-2461 (1995).

O. Sandfuchs, D. Pätz, S. Sinzinger, A. Pesch, and R. Brunner, "Analysis of the influence of the passive facet of blazed transmission gratings in the intermediate diffraction regime" J. Opt. Soc. Am. A 25, (2008).

D. A. Buralli, G. M. Morris, and J. R. Rogers, "Optical performance of holographic kinoforms" Appl. Optics 28, 976-983 (1989).

B. H. Kleemann, A. Mitreiter, and F. Wyrowski, "Integral equation method with parametrization of grating profile - Theory and experiments" J. Mod. Optic. 43, 1323-1349 (1996).

A. Rathsfeld, G. Schmidt, and B. H. Kleemann, "On a Fast Integral Equation Method for Diffraction Gratings" Commun. Comput. Phys.1, 984-1009 (2006).

H. Ukuda, "Optical material, and optical element, optical system and laminated diffractive optical element using it", European Patent Application EP 1 394 574 (2003).

W. Stork, N. Streibl, H. Haidner, and P. Kipfer, "Artificial distributed-index media fabricated by zero-order gratings" Opt. Lett. 16, 1921-1923 (1991).

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, "Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff" J. Opt. Soc. Am. A 16, 1143-1156 (1999).

J. N. Mait, D. W. Prather, and M. S. Mirotznik, "Design of binary subwavelength diffractive lenses by use of zeroth-order effective- medium theory" J. Opt. Soc. Am. A 16, 1157-1167 (1999).

Mane-Si Laure Lee, P. Lalanne, P. Chavel, and E. Cambril, "Imaging with blazed-binary diffractive elements" Proc. SPIE on Physics, Theory, and Applications of Periodic Structures in Optics, P. Lalanne, ed., 4438, 62-68 (2001).

B. H. Kleemann, J. Ruoff, and R. Arnold, "Area-coded effective medium structures, a new type of grating design" Opt. Lett. 30, 1617-1619 (2005).

R. P. Salmio, J. Saarinen, J. Turunen, and A. Tervonen, "Graded- index diffractive structures fabricated by thermal ion exchange" Appl. Optics 36, 2048-2057 (1997).

T. Vahrenkamp, H. Kreitlow, H. Schütte, and C. Thoma, "DOE aus Glas für den Nd:YAG-Laser" Photonik 3, 6-8 (2002).

J. Teteris, "Holographic recording in amorphous chalcogenide thin films" Current Opinion in Solid State and Material Science 7, 127- 134 (2003).

T. Buffeteau, F. Lagugnè Labarthet, C. Sourisseau, S. Kostromine, and T. Bieringer, "Biaxial orientation induced in a photoaddressable azopolymer thin film as evidenced by polarized UV- Visible, infrared, and Raman spectra" Macromolecules 37, 2880- 2889 (2004).

R. Hagen and T. Bieringer, "Photoaddressable polymers for data storage" Advanced Mat. 13 1805-1810 (2001).

J. M. Tsui, C. Thompson, V. Mehta, J. M. Roth, V. I. Smirnov, and L. B. Glebov, "Coupled-wave analysis of apodized volume gratings" Opt. Express 12, 6642-6653 (2004).

J. Yeh, A. Harton, and K. Wyatt, "Reliability study of holographic optical elements made with DuPont photopolymer" Appl. Optics 37, 6270-6274 (1998).

S. M. Rytov, "Electromagnetic properties of a finely stratified medium" Sov. Phys. JETP-USSR 2 466-475, (1956).

http://www.texloc.com/closet/cl_refractiveindex.html

M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. J. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, C. G. Willson, "Step and Flash Imprint Lithography: A new approach to high-resolution patterning" Proc. SPIE on Microlithography 3676, 379-389 (1999).

http://www.cargille.com

D. Mund, K. M. Hammerl, "Building up diffractive optics by structured glass coatings" Patent Application Publication WO 2005 121 842 A1

http://en.wikipedia.org/wiki/Tetris