Journal of the European Optical Society - Rapid publications, Vol 3 (2008)

Slow-light enhanced absorption for bio-chemical sensing applications: potential of low-contrast lossy materials

J. Pedersen, S. Xiao, N. A. Mortensen


Slow-light enhanced absorption in liquid-infiltrated photonic crystals has recently been proposed as a route to compensate for the reduced optical path in typical lab-on-a-chip systems for bio-chemical sensing applications. A simple perturbative expression has been applied to ideal structures composed of lossless dielectrics. In this work we study the enhancement in structures composed of lossy dielectrics such as a polymer. For this particular sensing application we find that the material loss has an unexpected limited drawback and surprisingly, it may even add to increase the bandwidth for low-index contrast systems such as polymer devices.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2008.08007]

Full Text: PDF

Citation Details

Cite this article


D. Janasek, J. Franzke, and A. Manz, "Scaling and the design of miniaturized chemical-analysis systems" Nature 442, 374-380 (2006).

E. Verpoorte, "Chip vision - optics for microchips", Lab Chip 3, 42N-52N (2003).

K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems", Electrophoresis 25, 3498- 3512 (2004).

D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics", Nature 442, 381-386 (2006).

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light", Nature Photonics 1, 106-114 (2007).

D. Erickson, "Special issue on "Optofluidics"", Microfluid. Nanofluid. 4, 1 (2008).

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, "Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems", Appl. Optics 42, 4072-4079 (2003).

N. A. Mortensen and S. Xiao, "Slow-light enhancement of Beer- Lambert-Bouguer absorption", Appl. Phys. Lett. 90, 141108 (2007).

J. Pedersen and N. A. Mortensen, "Enhanced circular dichroism via slow light in dispersive structured media", Appl. Phys. Lett. 91, 213501 (2007).

N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-achip applications", Microfluid. Nanofluid. 4, 117 (2008).

M. E. V. Pedersen, L. S. Rishj, H. Steffensen, S. Xiao, and N. A. Mortensen, "Slow-light enhanced optical detection in liquidinfiltrated photonic crystals", Opt. Quant. Electron. 39, 903 (2007).

K. Kim, H. Yoo, D. H. Lee, and H. Lim, "Exact analytical expressions for the dispersion relation of one-dimensional chiral photonic crystals", Waves Random Complex Media 16, 75-84 (2006).

F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, and A. Kristensen, "Optofluidic tuning of photonic crystal band edge lasers", Appl. Phys. Lett. 91, 223503 (2007).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995).

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dyesensitized titanium dioxide photoelectrodes coupled to photonic crystals", J. Am. Chem. Soc. 125, 6306-6310 (2003).