Journal of the European Optical Society - Rapid publications, Vol 1 (2006)

Liquid-infiltrated photonic crystals: Ohmic dissipation and broadening of modes

N. A. Mortensen, S. Ejsing, S. Xiao

Abstract


The pronounced light-matter interactions in photonic crystals make them interesting as opto-fludic "building blocks" for lab-on-a-chip applications. We show how conducting electrolytes cause dissipation and smearing of the density-of-states, thus altering decay dynamics of excited bio-molecules dissolved in the electrolyte. Likewise, we find spatial damping of propagating modes, of the order dB/cm, for naturally occurring electrolytes such as drinking water or physiological salt water.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2006.06032]

Full Text: PDF

Citation Details


Cite this article

References


D. Psaltis, S. R. Quake, and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics" Nature 442, 381 - 386 (2006).

M. Lon_car, A. Scherer, and Y. M. Qiu, "Photonic crystal laser sources for chemical detection" Appl. Phys. Lett. 82, 4648 - 4650 (2003).

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity" Opt. Lett. 29, 1093 - 1095 (2004).

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device" Appl. Phys. Lett. 84, 1838 - 1840 (2004).

H. Kurt and D. S. Citrin, "Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region" Appl. Phys. Lett. 87, 241119 (2005).

M. L. Adams, M. Lon_car, A. Scherer, and Y. M. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing" IEEE J. Sel. Areas Commun. 23, 1348 - 1354 (2005).

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits" Opt. Lett. 31, 59 - 61 (2006).

T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, "Photonic crystals for fluid sensing in the subterahertz range" Appl. Phys. Lett. 89, 173508 (2006).

S. Xiao and N. A. Mortensen, "Highly dispersive photonic band- gap-edge optofluidic biosensors" J. Eur. Opt. Soc., Rapid Publ. 1, 06026 (2006).

E. Yablonovitch, "Inhibited spontaneous emission in solid state physics and electronics" Phys. Rev. Lett. 58, 2059-2062 (1987).

S. John, "Strong localization of photons in certain disordered dielectric superlattices" Phys. Rev. Lett. 58, 2486 - 2489 (1987).

T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale" Rev. Mod. Phys. 77, 977 - 1026 (2005).

G. M. Whitesides, "The origins and the future of microfluidics", Nature 442 368 - 373 (2006).

N. A. Mortensen and S. Xiao, "Slow-light enhancement of Beer- Lambert-Bouguer absorption", preprint (2006).

N. A. Mortensen, L. H. Olesen, L. Belmon, and H. Bruus, "Electrohydrodynamics of binary electrolytes driven by modulated surface potentials" Phys. Rev. E 71, 056306 (2005).

O. J. F. Martin, C. Girard, and A. Dereux, "Generalized field propagator for electromagnetic scattering and light confinement", Phys. Rev. Lett. 74 526 - 529 (1995).

O. J. F. Martin, C. Girard, D. R. Smith, and S. Schultz, "Generalized field propagator for arbitrary finite-size photonic band gap structures", Phys. Rev. Lett. 82 315 - 318 (1999).

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency- domain methods for Maxwell's equations in a planewave basis", Opt. Express 8 173 - 190 (2001).

P. Lodahl, A. F. van driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals", Nature 430 654 - 657 (2004).