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The non-null testing methods have the potential to allow measurement of aspheric surfaces with large departures from a reference sphere.
In a non-null configuration, the ray will return along a different path and interfere with a different reference ray. This difference in
‘’mapping” between the test and reference rays creates an additional optical path difference (OPD) contribution, which causes test part
errors to be mapped to the wrong location. To correct the mapping errors in non-null test of aspheric surface, correction method are
proposed by ray trace and wave-front analysis. Experiments are carried out to illustrate the effectiveness of this approach. The methods
can work well, despite large deviation between the theoretic value of the aspheric and the reference wave-front.
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1 INTRODUCTION

Traditional interferometry is done in a null or near-null condi-
tion. The rays from the test part follow exactly the same path
through the optical system as the reference rays and no sys-
tematic errors are induced. This null condition indicates the
shape of the measured object is nearly identical to that of the
reference and small deviations from the null are linearly pro-
portional to the differences between them. Thus, it is possible
to assess the shape of a measured surface using the map of dif-
ferences simply by rescaling this map to relevant units. How-
ever, when testing an asphere without a null, the rays from
the test wavefront and reference wavefront will not trace the
same optical path. This results in aberrations due to the op-
tical properties of the optical components and the departure
from the reference sphere not canceling each other, and thus
will be present in the final measurements. Such aberrations,
called retrace errors, lead to wide difference between the ob-
tained surface figures and depend on the optical layout of the
instrument which can be significant [1]–[3].

The induced aberrations can be classified into phase errors
and mapping errors. Mapping error occurs under condi-
tions of nonlinear magnification: the wave front from the test
surface becomes stretched or squeezed at various positions,
which causes test part errors to be mapped to the wrong loca-

tion. Eliminating the lens distortion achieves a linear mapping
in a null test, but this need not be true in a non-null test [4, 5].

In the case of measurements of aspheric surfaces with a spher-
ical reference, rays from different pupil regions follow differ-
ent optical paths through the system, varying with apertures
and dependent on the test part, and lead to considerable test-
ing error that cannot be negligible [6]–[8]. Especially for the
sub-aperture stitching test of aspheric surface, the mapping
is crucial for stitching into a unified map, when placing the
sub-aperture data onto a global coordinate plane. If this effect
is not corrected, the ill-conditioned character of the stitching
process means that, even though the distortion may appear to
be a minor factor within each sub-aperture, significant errors
can be introduced to the stitched data.

In this paper, we use the simple ray tracing method to ana-
lyze the mapping error in non-null aspheric testing. Based on
the analysis of retrace error and wave-front distortion, effec-
tive methods are proposed to correct the errors in non-null
aspheric testing. The methods work well, despite large devia-
tion between the theoretic value of the aspheric and the refer-
ence wave-front. Experiments are carried out to illustrate the
effectiveness of this approach.
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FIG. 1 Ray trace in non-null test of aspheric surface.

2 MAPPING ERROR ANALYSIS OF
NON-NULL ASPHERIC TESTING

In the non-null test of aspheric surface, the local test surface
is not normal to the incident ray. The ray will return along a
different path and interfere with a different reference ray, as
shown in Figure 1. This difference in ‘’mapping” between the
test and reference rays in the viewing system creates an ad-
ditional OPD contribution that depends upon both the shape
and misalignment of the test surface. This mapping-induced
OPD error can be thought of as a shear of the test wave-front
and reference wave-front in the exit pupil of the viewing sys-
tem [9, 10].

A mapping error occurs for a test ray which intersects the im-
age plane at a location different from that predicted by the
first order magnification of the system. For a spherical refer-
ence wave-front, the mapping error is a nonlinear magnifica-
tion, which appears as distortion in the test wave-front. The
complete mapping functions are [5]

h′test(h) = mh + ey[rtest(h), h]

h′re f (h) = mh + ey[0, h] (1)

Only linear magnification m and distortion aberration ey[0, h],
determine the mapping in a null test. As the test rays rtest(h)
becomes larger, all other transverse ray aberrations affect the
test ray mapping.

In the null test, the common path situation implies rtest = rre f ,
so ey[rtest(h), h] − ey[rre f (h), h] ≈ 0, there is no mapping er-
ror. In the non-null test, as shown in Figure 1, the original
reference and test rays do not intersect at the detector plane.
The mapping error causes test part errors to be mapped to the
wrong location.

This mapping is not at 1:1 from test surface to detector pixel
coordinates. Instead, the mapping can be simply written as

ρ′ = (1 + ε)ρ (2)

The radial coordinate of the ideal wave-front is denoted ρ, and
that of the distortion wavefront ρ′.

An effective step therefore is to express ε(ρ2) as a polynomial

ε(ρ2) = ε0 + ε1ρ2 + ε2ρ4 + ... + εnρ2n (3)

Where in the dimensionless constants in the expression evi-
dently satisfy |εi| � 1 for all i. ε0 gives a fine correction to the

pixel scale, ε1 corrects for what is usually called third-order
distortion, ε2 for fifth-order, etc. Since the low-order terms
generally dominate, it is often sufficient for n to be one or two.

As mentioned above, the mapping error creates an additional
OPD contribution that depends upon the misalignment, such
as defocus, and the departure of the test aspheric surface from
the reference sphere.

If a known focus shift is made in the optical test, we have a
wave-front change that is expressed as the wave-front form
for defocus is shown in

W(ρ, θ) = kρ2 (4)

where k is the defocus in waves of error at the edge of the
aperture.

According to Eq. (4) and Eq. (5), for n = 1, Eq. (4) can be ex-
pressed as

ρi = ρm(1 + ερ2
m) = ρm + ε3

m (5)

where ε is the fractional distortion at the edge of the aperture.
The error was introduced into the position coordinate ρ by
third order distortion.

Substituting Eq. (7) into Eq. (6) the form of the wave-front at
the detector can be derived as

W(ρ, θ) = k(ρ2 + 2ερ4 + ε2ρ6) (6)

The measured error can be expressed as

∆W(ρ, θ) = k(2ερ4 + ε2ρ6) (7)

When alignment errors and higher order terms in this wave-
front expression are ignored, the measured error can be ex-
pressed as

∆W(ρ, θ) = 2kερ4 (8)

We can see that a known amount of focus in the wave-front
contributes spherical aberration to the measured result. This
defocus will lead to considerable testing error that cannot be
negligible. The departure of the test aspheric surface from the
reference sphere can result in similar consequences.

For mapping error correction, the relation between the ideal
wavefront and distortion wavefront can be written as

W(ρ) = Wd(ρ) = Wi[(1 + ε)ρ] (9)

The wavefront error caused by mapping error as follows

∆W = Wd(ρ)−Wi(ρ)

= W
(

ρ

1 + ε

)
−W(ρ)

≈W[(1− ε)ρ]−W(ρ) (10)

The error of radial coordinate can be written as

∆ρ = ερ (11)

Then
∂W
∂ρ

=
W[(1− ε)ρ]−W(ρ)

ερ
(12)
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FIG. 2 Measurements taken at null and non-null positions.

So we can get

∆W = ερ
∂W
∂ρ

(13)

If we take n = 1, the compensators can be written in polyno-
mial as

∆W(x, y) =ε0

[
x

∂ f (x, y)
∂x

+ y
∂ f (x, y)

∂y

]
+ ε1

[
x

∂ f (x, y)
∂x

+ y
∂ f (x, y)

∂y

]
ρ2 (14)

The form of the compensators presented above depends on
the measured aperture data. By controlling wavefront focus
and monitoring the resulting aberration, an estimate of the
system distortion can be made. Once the distortion is deter-
mined, a polynomial transformation can be applied to remap
the surface data appropriately.

3 EXPERIMENT

3.1 Measurements of spherical surfaces in
non-nul l condit ion

The effectiveness of this approach is illustrated by example.
For that purpose we used a calibrated spherical surface ac-
curate to within λ/10 and an F/1.5 transmission sphere. A
defocused sphere was used to generate large departures from
a reference sphere in a non-null configuration.The calibrated
spherical surface was measured in a non-null condition (de-
focused position) resulting in high density fringes in order to
compare these results with measurements obtained in the null
condition (residual focus was removed in all measurements).

Figure 2 shows measurements taken at different positions. The
calibrated spherical surface was moved from the null position
to non-null position by translating it along the optical axis of
the interferometer.

Figure 3 and Figure 4 plot results of the aberration coefficients
of Zernike polynomials. Figure 3 shows the aberrations calcu-

FIG. 3 Aberrations with no corrections and power removed.

FIG. 4 Aberrations with mapping error corrections and power removed.

lated for the phase map obtained directly from the interfero-
grams, while Figure 4 shows the aberration results after the
‘’mapping error” correction. From these results it is clear that
the error is dominated by spherical aberration as a function
of focus position in the optical test. These data can be used
to write a set of equations relating wavefront coefficients for
spherical (Z9) and focus (Z4) aberrations for individual mea-
surement cases of varying defocus. This set of equations can
then be used to calculate wave-front coefficients in order to es-
timate the system distortion. The performance of the mapping
error correction is a function of fringe density, and is better
than λ/20 at 20 fringes.

3.2 Measurements of aspheric surfaces in
non-nul l condit ion

Measurement of aspheric surface has been taken using the
same procedure as the one described for the measurement
of the calibrated spherical surface. The interferograms were
recorded at the location where the fringe density was mini-
mal. The radius of curvature (ROC) of the illuminating beam
at this location corresponds to the best fit sphere of the as-
pheric surface. This ROC value is used in addition to the mea-
surement and ray trace results in order to generate the actual
surface shape. The measured surface shape is then subtracted
from the actual lens design prescription to create a difference
phase map. Figure 5 is an example of an aspheric measure-
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(a)PV=0.3551λ, RMS=0.0416λ.   (b) PV=0.2637λ, RMS=0.0339λ

FIG. 5 An uncorrected measured aspheric wave-front (left), the corrected wave-front

minus the design prescription (right).

FIG. 6 A comparison with a standard measurement device.

ment in computing the final result. Figure 6 is a comparison
with a standard measurement device. The aberration results
after the ‘’mapping error” correction shows the effectiveness
of the proposed method.

4 CONCLUSION

The mapping error of non-null aspheric testing is analyzed
based on the ray tracing and wavefront analysis. The effec-
tiveness of correcting methods proposed is illustrated by the
examples of rotationally symmetric surfaces such as spheri-
cal surface and aspheric surface in nonnull condition. These
methods can improve the capability of interferometer for tak-
ing measurements in non-null conditions, has been demon-
strated to produce quality measurements of aspheric surfaces
and provide accurate knowledge of the position of surface fea-
tures in order to efficiently fabricate aspheric optical surfaces.
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