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Point diffraction interferometry to measure local
curvatures and caustics of noisy wave fronts:
Application for determining optical properties of fish
lenses
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The study of caustics is important because they contain information about the image formation properties of optical systems. In this work
we use the concept of caustic as a set of focal points, and we have developed a second order approach theory to determine local slopes and
curvatures of a wavefront emerging from an optical system. The method is based on the use of a point diffraction interferometer, and the
analysis of the interferograms allows us to compute the focal region. Experimental results obtained with a plano-convex lens demonstrate
the accuracy of the combined theoretical-experimental method here developed. Application to noisy wavefronts such as those produced by
biological samples, specifically in crystalline lenses of fish eyes, are also exposed.
[DOI: http://dx.doi.org/10.2971/jeos.2015.15010]
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1 INTRODUCTION
Caustics have been subject of research for many years. They
encode information about the image formation properties of
an optical system and thus they have been used among many
other applications to test mirrors, to compute the disk of least
confusion, to design null screens and to optimize optical sys-
tems [1]–[3]. Caustics have been studied from different per-
spectives. For instance, Stavroudis [4] developed a general in-
tegral of the eikonal equation in the particular case of a homo-
geneous optical medium and Burkhard and Shealy [5] have
computed the caustic surfaces as the locus of singularities of
the flux density of the emanating radiation. Caustics can be
defined as the envelope of a system of orthotomic rays, and
also as the locus of the principal centers of curvature of a
wavefront. Here we will use the concept of caustic as a set
of focal points, and by means of a local second order analysis
we will derive a simple method to compute them.

The spherical crystalline lenses in the eyes of many fish
species are well-suited models for studies on how natural se-
lection has influenced the evolution of the optical system [6].
As in all vertebrates, fish eyes are similar to a photographic
camera. In eye lenses the cornea and the crystalline lens pro-
vide a sharp image in the retina. Nevertheless, for fish lenses
where the cornea is surrounded by water and both refractive
indices are quite similar, focusing light on the retina is mainly
the task of the crystalline lens [7]. Among fish, the lenses of
teleosts have received the most attention, not only because
of easy access to fresh material and the simple geometry of

the lenses, which are typically spherical (hence they have only
spherical aberrations) [8]–[10] but also because chromatic de-
focus is compensated for by what is called multifocality of the
lens.

Multifocality can be quantified as the longitudinal spheri-
cal aberration curve of the lens. Such curves for different
species are usually obtained by scanning a thin laser beam
through a meridional plane of the lens and analysis of the
beam paths [11, 12]. Many biological multifocal optical sys-
tems have not yet been fully explored or understood and
this is due in part to the insufficient accuracy of the experi-
mental methods used. We present here a new interferometric
method that provides at the same time the slopes and the lo-
cal curvatures of the phase of a non-paraxial beam even under
noisy conditions such as those presented in biological sam-
ples. The theoretical approach to evaluate not only the longi-
tudinal spherical aberration but also the location of caustics is
also presented. The accuracy of the method is shown by nu-
merical simulations and experimental calibration by means of
a plano-spherical glass ball. The method is applied to evalu-
ate the optical properties of a teleost fish eye lens (Scorpaena
Scrofa).

2 THEORY

Any continuous function three times differentiable (i.e, in-
cluding polynomials of any order) can be locally approxi-
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FIG. 1 Terminology used for an optical beam propagating in free space.

mated around a point to a second order polynomial (Taylor
theorem). The region around the point where the approxi-
mation is ’good’ depends on the third order derivatives of
the function, which determine the approximation error of the
function to a second order polynomial [13]. Thus let Φ(x, y, z)
be the phase of an optical beam propagating in free space. For
a preferred propagation direction, named z, and in the vicini-
ties of a point (x0, y0) of a plane (z = 0) perpendicular to
the propagation direction as shown in Figure 1, the phase of a
beam can be approximated by the second order Taylor expan-
sion as:
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represents the curvatures of the phase at the point (x0, y0) [14].

For a rotationally symmetric beam the optical properties can
be studied in the tangential plane (X = 0) and Eq. (1), neglect-
ing the constant phase (piston) reduces to
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(3)

For non-paraxial beams, i.e., when the direction cosines can-
not be approximated by the angles themselves or the tangents
Eq. (3) represents the phase of an astigmatic wavefront that

 

FIG. 2 Ray tracing equivalent.

we can rewrite as:

Φ(x, y) ≈2π

λ
sin α0(y− y0)

+
π

λ

[
x2

Rx
+

cos2 α0(y− y0)
2

Ry

]
(4)

Therefore Rx and Ry provide, respectively, the distance from
(x0, y0) to the sagittal focal line and the tangential focal line

along the ray with direction cosine sin α0 = ∂Φ
∂y

∣∣∣
x0,y0

, passing

through (x0, y0). From a geometrical point of view we can rep-
resent this astigmatic wave as a narrow pencil beam of rays as
shown in Figure 2, where it can be seen that α0 accounts there-
fore for the oblique incidence of the ray.

In the limit, when the size of the region about (x0, y0) tends to
zero, the focal lines become two focal points and the caustic
surfaces of the wavefront can be regarded as the locus of the
focal points. We will call them ”approximated caustic” sur-
faces.

3 EXPERIMENTAL METHOD

3.1 Principles

The main element of a PDI is a semitransparent plate with a
clear pinhole, as shown in Figure 3. Our semitransparent plate
was made by coating a glass substrate with Cr. The optical
density was 2.5 and the pinhole diameter was 15 microns.

When a beam reaches the plate, a spherical reference wave
is produced by diffraction at the clear pinhole while the rest
of the beam passes through the plate without any change in
phase. If the size of the pinhole and the transmittance of the
plate are chosen in such a way that both beams have simi-
lar amplitude, well contrasted fringes will be observed in any
plane placed after the plate. The theoretical basis of the PDI
and some applications can be found in references [15]–[18].

In a plane at a distance D from the pinhole (placed at (xp, yp)

position), the observed interference pattern corresponds to
that produced by a spherical beam with focus at the pinhole
and the phase of the incident beam at the observation plane.
Thus, the fringe pattern provides information about the phase
of the incident wave, with the interference term given by

∆(x, y)=
{

Φ(x, y)− 2π

λ

√
(x− xp)2 + (y− yp)2 + (D)2

}
(5)

15010- 2



J. Eur. Opt. Soc.-Rapid 10, 15010 (2015) S. Vallmitjana, et al.

 

FIG. 3 Basic principle of PDI.

If the paraxial focus of the input beam does not lie in the
pinhole of the PDI plate (when xp 6= 0, yp 6= 0) then linear
carrier fringes are introduced in the interferograms. Spherical
carrier fringes are introduced when the beam focuses either
before or after the pinhole plate. On the other hand, the in-
tensity distribution corresponding to the diffracted spherical
beam is modulated by a Jinc function [18] and the more de-
focused the beam is, the smaller the region of well contrasted
fringes becomes. Moreover, when xp 6= 0 and/or yp 6= 0 the
region of visible fringes can be moved within the observation
plane [16, 18]. In this way the size and position of the region
of well contrasted fringes can be chosen. Therefore, for high
defocused incident beams, a few elliptical concentric fringes
within a very small region of the observation plane can be
recorded. We must point out here that if visible fringes are
not elliptic, second order approach does not apply, therefore
the pinhole must be moved in such a way that fringes be-
come smaller and elliptical to ensure they are within the re-
gion where the approximating remainder term (as stated by
Taylor theorems) is negligible.

For rotationally symmetric beams we can get all 3-D informa-
tion by setting xp = 0 and varying only yp. In this case, the
interference patterns correspond to the interference of the lo-
cal second order approaches of both the reference beam [13].
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2π

λ

√
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≈2π

λ
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]
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and the beam under test [14]

Φ(x, y) ≈2π
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The center of the ellipses lies at the intersection point (on the
observation plane) of the ray passing through the pinhole,

sin α0 =
(y0 − yp)√

D2 + (y0 − yp)2
(8)

 

FIG. 4 Experimental set up for testing a plano-convex lens.

 

FIG. 5 Scanning of the phase at the observation plane by moving the pinhole transver-

sally.

and it is common for both beams due to the fact that the center
of the ellipses (0, y0) and the tangential and sagittal focus for
both astigmatic beams lie in the same ray.

In practice, by controlling the pinhole position y0 and by
knowing the distance D, sin α0 can be measured. From the
measurement of the major and minor axis of any of the in-
terference fringes (maxima or minima) Rx and Ry are straight-
forward to evaluate.

In short, the interferometer can perform a scanning of the
beam in the observation plane providing first and second or-
der derivatives of the beam as in Eq. (3) or equivalently the
local slopes 0 , and the local curvatures Rx and Ry as in Eq. (4).

3.2 Accuracy of the method

In order to demonstrate experimentally the accuracy of both
the quadratic approach as well as the interferometer, on one
hand we developed the experimental set up shown in figure
4 to determine the caustics position of a beam produced by
a plano-convex lens illuminated by an on-axis plane wave.
F is a monomode optical fiber connected to a He-Ne laser
(@633 nm), C is a collimating lens, L is the lens under test
(Thorlabs, LA1951), PDI is the point diffraction interferometer,
S is a screen and D is a CCD camera.

In order to obtain what we call ”experimental caustic” we fit
the first dark fringe of the interferograms to an ellipse in order
to obtain the values for the major and minor axis and therefore
Rx and Ry. From the height of the pinhole, the center of the
ellipses y0 and the distance from the pinhole to the observa-
tion plane we calculate 0. Due to the symmetry the scanning is
performed for only positive or negative values of yp. Figure 5
illustrates more clearly the relationship between the pinhole
position and the center of the ellipses as explained above.
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FIG. 6 Accuracy of the caustics position determination. Approximated: computed by

numerical evaluation of the first and second derivatives of the phase. Experimental:

from the measured values of the semi-axis of the ellipses in the interferograms. Exact:

obtained by ray tracing as described in [19].

On the other hand the optical path length (OPL) of the rays at
the observation plane S is calculated by ray tracing [19] and
values are fitted to an 8th degree polynomial in the radial co-
ordinate. From the fit, the first and second order local partial
derivatives of the OPL are evaluated to obtain numerical val-
ues for α0, Rx and Ry respectively and hence the locus of what
we call ”approximated caustics”. Moreover the exact position
of caustics for the lens can also be numerically determined by
ray tracing, as described in Reference [19]. This is the so called
’exact’ caustic. Figure 6 summarizes the results. We can see
that the second order approach for the numerical determina-
tion of the caustics position as well as for the experimental one
are in good agreement with the exact position of the caustics
surfaces for a wavefront that is well approximated by an 8th

degree polynomial or, equivalently, in this case with an 8th or-
der spherical aberration. As could be expected, as the height
of the marginal ray increases, the accuracy of the approxima-
tion decreases. Nevertheless, as we will see in next section,
this accuracy is enough to calculate caustics surfaces for eye
lenses.

4 OPTICAL PROPERTIES OF FISH LENSES

An eye lens of a scorpion fish was placed in a glass cell filled
with supplemented Medium 199 plus solution to prevent fast
degeneration. The lens was excised a few hours postmortem.
We used the same set up as that in Figure 4 but replacing the
plano-convex by the eye lens in the cell as shown in Figure 7.

Figure 8 shows the fringes at the observation plane and the
close up image used to fit the first dark fringe to an ellipse.
It can be seen that fringes are much noisier than those for the
plano-convex lens, with an acceptable contrast, though.

As in the previous section the PDI plate is displaced vertically
to allow scanning of the local curvatures and the slope of the
phase across the observation plane. From the size of the axes
of the first dark ellipse, the local curvatures (or equivalently

 

FIG. 7 Detail of the set up for the measurement of eye lenses. Glass cell with the lens

illuminated by a plane wave and PDI plate in the vicinities of the focal region of the

fish eye lens.

 
 

2 mm 

FIG. 8 Noisy interferograms for a fish lens.
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FIG. 9 Tangential and sagittal caustics of fish crystalline lens.

Rx and Ry) are obtained, and the slope is determined by con-
trolling the position of the pinhole. In this case, in order to
check the symmetry of the lens, the scanning is done to ob-
tain both upper and lower branches of the tangential caustic
surface. With all these data, the position of the corresponding
points at the caustic surfaces is evaluated as explained in Sec-
tion 3.1. Figure 9 shows the results for tangential and sagittal
caustics.

We can observe that the position of the caustic surfaces is not
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as smooth as in the plano-convex lens. Nevertheless the pres-
ence of spherical aberration of the eye lens is notorious. The
symmetry is not perfect but there are no significative varia-
tions between the upper and the lower parts of the caustic
surface. The experimental data for the caustics can be fitted
to find a smooth curve describing the main aberration as well
as to quantify the noise of this type of biological tissues. The
multifocality for different wavelengths can be directly evalu-
ated.

5 CONCLUSIONS

We can therefore perform a mapping of noisy wavefronts and
obtain the caustic surfaces by means of a second order ap-
proach of wavefronts and a point diffraction interferometer.
We have obtained simple formulae to locate caustics in the
tangential plane, as a proof of concept that a simple second
order approach of the phase in a plane can provide accurate
location of the caustic surfaces. We believe that the method for
obtaining the caustic reported here is easy, conceptually sim-
ple and fast to implement. The study of caustics in 3D, with
no rotational symmetry, will be subject of a future work. This
mapping of the phase is of use for highly aberrated beams
where the dynamic range of interferometers is not sufficient
just like those produced by some ophthalmic lenses [12, 16]
or, as we have shown here, for noisy wavefronts where noise
can either destroy coherence or induce phase dislocation in
the interferograms and therefore invalidate measurements as
is the case of some biological samples such as fish eyes.
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