Reduced symmetry and analogy to chirality in periodic dielectric media

I. H. Giden
igiden@etu.edu.tr
Nanophotonics Research Laboratory, Department of Electrical and Electronics Engineering, TOBB University of Economics and Technology, Ankara, 06560 Turkey

M. Turduev
Nanophotonics Research Laboratory, Department of Electrical and Electronics Engineering, TOBB University of Economics and Technology, Ankara, 06560 Turkey

H. Kurt
Nanophotonics Research Laboratory, Department of Electrical and Electronics Engineering, TOBB University of Economics and Technology, Ankara, 06560 Turkey

Much attention has been paid to photonic applications based on periodic media. Meanwhile, quasi-periodic and disordered media have extended the research domain and provided additional novelties for manipulating and controlling light propagation. This review article attempts to highlight the benefits of symmetry reduction in highly symmetric periodic photonic media, and applies the concept of chirality to all-dielectric materials arranged in special orders. Two-dimensional periodic structures known as photonic crystals (PCs) are highly symmetric in terms of structural patterns, due to the lattice types and shape of the elements occupying the PC unit-cell. We propose the idea of intentionally introducing reduced-symmetry, to search for anomalous optical characteristics so that these types of PCs can be used in the design of novel optical devices. Breaking either translational or rotational symmetries of PCs provides enhanced and additional optical characteristics such as creation of a complete photonic bandgap, wavelength demultiplexing, super-collimation, tilted self-collimation, and beam deflecting/routing properties. Utilizing these characteristics allows the design of several types of photonic devices such as polarization-independent waveguides, wavelength demultiplexers, beam deflectors, and routers. Moreover, reducing the symmetry in the PC unit-cell scale produces a novel feature in all-dielectric PCs that is known as chirality. On the basis of above considerations, it is expected that low-symmetric PCs can be considered as a potential structure in photonic device applications, due to the rich inherent optical properties, providing broadband operation, and being free of absorption losses.

[DOI: http://dx.doi.org/10.2971/jeos.2014.140451]

Keywords: Photonic crystals, non-periodic photonic media, tilted self-collimation, super-collimation, beam deflection, beam routers, beam splitters, wavelength demultiplexing, polarization-insensitive devices, chirality, all-dielectric medium

1 INTRODUCTION TO PHOTONIC CRYSTALS WITH REDUCED-SYMMETRY

In order to exploit novel optical properties of light, it is essential to convert a medium with a homogeneous refractive index into a periodically modulated one. One-dimensional configurations with small refractive index contrast are the most popular structures in optical devices and have been used for a long time. The pioneering study on multi-layered and periodic dielectric structures was conducted by Rayleigh in 1887 [1]. That study showed that it is possible to find a photonic band gap (PBG) in one-dimensional periodic structures. Integrated versions of one-dimensional periodic structures have been investigated and used in photonic devices such as multi-layered dielectric mirrors, Bragg gratings, distributed feedback lasers, and vertical cavity surface emitting lasers [2]. The common property of such devices is a small refractive index contrast modulated along one dimension. Hundred years later, in 1987, Yablonovitch and John suggested a new type of dielectric structure called photonic crystals (PCs) that may be multi-dimensional periodic and possess a high index contrast ratio [3, 4]. Such nanoscale electromagnetic band gap materials are called photonic, since strong photon interactions occur with these types of periodic structures. One of the basic characteristics of PCs is that the refractive index variation may appear in one, two, or even three-dimensions. The PC concept has been extensively studied in the photonics field since 1987 because of its ability to control the flow of light. One of the most attractive aspects of PCs is that the light-matter interaction in PCs enables unique optical conditions that cannot be observed in standard optical waveguides, e.g., slow-light, graded-index PC design, optical cavities with high Q-factor, super-prisms, self-collimators, sensitive bio-chemical PC based sensors, specific light sources, and lasers [5]–[16]. Furthermore, light motion inside PCs can be analyzed by scale-invariant Maxwells equations, so that structural PC unit-cell parameters can be easily tuned either to millimeter or micron-scale [17]–[20].

Meanwhile, research into aperiodic and disordered PC structures has attracted the much attention [21]. The interaction of photons with these types of structures allows exciting optical phenomena to be obtained; light scattering in disordered media may provide strong photon localization [22]. Disordered structures have potential in some applications such as random lasing, Anderson localization, sub-wavelength imaging, and novel light-source designs [23]. In a recent work, a compact spectrometer with high reso-
lution was designed by intentionally introducing disorder into the photonic medium [24]. Utilizing random gain medium for lasing action is another research topic that exploits light scattering and amplification in disordered materials [24]–[28].

Periodic structures may be disadvantageous in some cases because of their high-symmetry. For example, high-symmetric structures are very sensitive to structural deformation. Moreover, the operating bandwidth may be quite small for the high-symmetric PC case. Besides, structural degradation during the fabrication process can be considered as another possible problem, since it causes deviation from the ideal cases. Lastly, unusual optical characteristics may be expected while reducing the symmetry of PC structures.

In addition to periodic and disordered PC configurations, quasi-crystals are a topic of much interest and have been intensively studied. Translational symmetry is broken in quasi-periodic structures, whereas rotational symmetry is kept intact [29]. Although random and disordered PCs do not have any spatial symmetry property, quasi-periodic structures possess a reduced symmetry characteristic; these types of periodic structures have high rotational symmetry and, therefore, anomalous characteristics may arise, especially in transmission spectra and photonic band gaps [30]–[33]. Due to the high rotational symmetries of quasi-crystals, their forbidden band gaps and light transport properties are superior to regular PCs [34]–[40]. Furthermore, using these types of PC designs, unique optical properties may be expected while reducing the symmetry of PC structures [41].

In this study, low-symmetric PCs, which are different types of PCs to those mentioned above, will be presented and reviewed. What we refer to by low-symmetric or reduced-symmetry PCs is that, in principle, either rotational or translational symmetry is broken in the PC unit-cell. The rotational symmetry in PCs can be broken by locating more than one PC inside the unit-cell. Then it is possible to implement a unit-cell such that the mirror image of the unit-cell is not superposable. This is similar to a chiral molecule in chemistry that has a non-superposable mirror image. A materials chirality provides comprehensive information on its stereochemistry. The spatial arrangement of the atoms of molecules and how this affects the physical and chemical properties of the species plays an important role in stereochemistry. Different structural arrangements of atoms may demonstrate different chemical characteristics, even with the same molecular formula. As a result, motivated by the concept of chirality in chemistry, we intend to use PCs with chiral unit-cells. We expect to obtain novel light propagation characteristics in such photonic structures.

The symmetry reduction in our case is achieved by introducing either more than one piece of dielectric or a complex shaped element, and choosing appropriate locations for them inside the unit-cell. Then it is possible to implement a unit-cell such that the mirror image of the unit-cell is not superposable. This is similar to a chiral molecule in chemistry that has a non-superposable mirror image. A materials chirality provides comprehensive information on its stereochemistry. The spatial arrangement of the atoms of molecules and how this affects the physical and chemical properties of the species plays an important role in stereochemistry. Different structural arrangements of atoms may demonstrate different chemical characteristics, even with the same molecular formula. As a result, motivated by the concept of chirality in chemistry, we intend to use PCs with chiral unit-cells. We expect to obtain novel light propagation characteristics in such photonic structures.

The rest of the paper is organized as follows: In Section 2, we provide symmetry definitions in PCs. Then, an analytical approach for the calculation of the band-structure of low-symmetric PCs is presented in Section 3. We introduce a new concept by making an analogy to chirality in Section 4. The last two sections (Sections 5 and 6) include discussions of potential applications, future research directions, and the conclusions.

2 Symmetry Definition in Photonic Crystals

Square lattice PCs have translational symmetry with respect to lattice vectors, \(\mathbf{a}_1 \) and \(\mathbf{a}_2 \), so that the dielectric permittivity of the periodic structure can be defined by, \(\varepsilon(\mathbf{r}) = \varepsilon(\mathbf{r} + l\mathbf{a}_1 + m\mathbf{a}_2) \), in which \(l \) and \(m \) are integers. As shown in Figure 1(a), for the square lattice PC cylinders, the corresponding lattice unit vectors are, \(\mathbf{a}_1 = a\hat{x} \) and \(\mathbf{a}_2 = a\hat{y} \).
where \hat{x} and \hat{y} are the base vectors in the spatial domain and a is the lattice constant. In addition to translational symmetry, two-dimensional PCs may have other types of symmetries such as mirror and rotational symmetries. If the PC design is invariant under the mirror reflection along the x-axis by the operation, σ_y, then the corresponding dielectric constant function does not change depending on sign of x, i.e., $\varepsilon(x, y) = \varepsilon(-x, y)$. Similarly, if the PC structure has a mirror symmetry under an operation, ϵ_y, then the dielectric permittivity function is invariant to the change of sign y, $\varepsilon(x, y) = \varepsilon(x, -y)$. The mirror symmetry operators, σ_x and σ_y, are given as insets in Figure 1(a). The rotational symmetry operation is another symmetry operation to be considered. It is denoted by C_θ, which means the PC structure can be rotated by $\frac{2\pi}{\theta}$ radian in a counterclockwise direction about the origin without altering its geometry [52]. Figure 1(a) shows schematic representations of two examples of rotational symmetry operations, namely C_2 and C_4.

The band structure of a crystal provides significant information about its optical properties. When the PC lattice has rotational or mirror symmetry, then the band structures also have that symmetry [52]. In such a case, we do not need to consider every k point in the Brillouin zone. The smallest region within the Brillouin zone is called the Irreducible Brillouin zone, where the symmetries in frequency bands cannot be taken into account. Figure 1(b) shows a schematic diagram of the first Brillouin zone of the square lattice PC, in which the Irreducible Brillouin zone is represented by the shaded region. On the other hand, when either the mirror or rotational symmetry of the structure is broken at a unit-cell scale, by reducing the symmetry of PC rods, the photonic band calculations in the Irreducible Brillouin zone are not sufficient anymore. Instead, every k-point at the edges of first Brillouin zone should be considered, and, thus, the band structure of low-symmetric PCs should be calculated along the $[\Gamma - X - M - X_1 - M_1 - X_2 - M_2 - X_3 - M_3 - X - \Gamma]$ path, which is shown by the arrows in Figure 1(b). In such a low-symmetric PC case, maxima and minima of photonic bands at high-symmetry points in the Brillouin zone may shift accordingly, which results in the variation of the band gap boundaries [53].

The detailed analytical investigation for the reduced symmetry PCs will be conducted in the next section.

3 AN ANALYTICAL APPROACH TO THE BAND STRUCTURE OF LOW SYMMETRIC PHOTONIC CRYSTALS

An analytical approach can be made in order to determine band structure of periodic PCs as well as to better understand how the band structure is affected when a low-symmetry is introduced to the PC unit-cell. For that purpose, one should consider the well-known time-dependent Maxwell’s equations in source-free dielectric media:

$$\nabla \cdot \mathbf{H}(r, t) = 0, \quad \nabla \times \mathbf{H}(r, t) - \varepsilon(r) \frac{\partial \mathbf{E}(r, t)}{\partial t} = 0, \quad (1)$$

$$\nabla \cdot \varepsilon(r) \mathbf{E}(r, t) = 0, \quad \nabla \times \mathbf{E}(r, t) + \mu_0 \frac{\partial \mathbf{H}(r, t)}{\partial t} = 0, \quad (2)$$

where \mathbf{H} and \mathbf{E} represent the magnetic and electric fields, respectively, depending on the coordinates in space and time, (r, t). Moreover, ε and μ_0 are the position-dependent dielectric permittivity and the permeability in free space, respectively. Time-harmonic $E(r, t)$ and $H(r, t)$ field vectors can be represented in terms of the vector field phasors, $\mathbf{E}(r)$ and $\mathbf{H}(r)$, such that

$$\mathbf{E}(r, t) = \mathbf{E}(r) \exp(-i\omega t), \quad \mathbf{H}(r, t) = \mathbf{H}(r) \exp(-i\omega t), \quad (3)$$

In which ω is the angular frequency. Then, Maxwell’s equation for the steady state can be written in terms of the vector field phasors as follows:

$$\nabla \cdot (\varepsilon(r) \mathbf{E}(r)) = 0, \quad \nabla \times (\varepsilon(r) \mathbf{E}(r) - i\omega \mu_0 \mathbf{H}(r)) = 0. \quad (4)$$

In dielectric media, Maxwell’s equation can be expressed in terms of only the magnetic field phasor, $\mathbf{H}(r)$, as follows:

$$\nabla \times \left[\frac{1}{\varepsilon(r)} \nabla \times \mathbf{H}(r) \right] = \left(\frac{\omega}{c_0} \right)^2 \mathbf{H}(r). \quad (5)$$

This equation is called the Master equation and the term c_0 is the phase velocity of wave propagation in vacuum. Thus, the Master equation can be expressed in terms of an eigenvalue problem, and according to Bloch’s theorem [42], the electromagnetic field in periodic media can be expanded into a set of harmonic (Bloch) modes, which must satisfy the following relations:

$$\mathbf{H}(r) = \mathbf{H}_k(r) \exp(i\mathbf{k} \cdot r) \quad (6)$$

where $\mathbf{H}_k(r)$ is a periodic function of the lattice structure, i.e., $\mathbf{H}_k(r) = \mathbf{H}_k(r + \mathbf{R})$, where \mathbf{R} is the lattice vector and \mathbf{k} is the Bloch wavevector in the first Brillouin zone. The methodology used for the following derivations is similar to one used previously [54]. Using the Fourier transformation, the magnetic field, $\mathbf{H}_k(r)$, and the dielectric function, $\varepsilon(r)$, can be expressed as the sum of plane waves,

$$\mathbf{H}_k(r) = \sum_{\mathbf{G}} \sum_{j=1,2,3,\ldots} \hat{\mathbf{e}}_j H_{jk} \exp(i \mathbf{G} \cdot \mathbf{r}), \quad (7)$$

$$\varepsilon(r) = \sum_{\mathbf{G}} \varepsilon(G) \exp(i \mathbf{G} \cdot \mathbf{r}), \quad (8)$$

where $\hat{\mathbf{e}}_j$ denotes the unit vector for the magnetic field and \mathbf{G} is the reciprocal lattice vector. Then, substituting the expansions
from Eqs. (7) and (8) into the Master equation, Eq. (5), one can obtain two equations for two-dimensional periodic lattices,

\[
\sum_{G'} |k + G| (k + G') \varepsilon^{-1} (G + G') H_{1,k} G' = \left(\frac{2 \pi}{\ell} \right)^2 H_{1,k} G, \quad (9)
\]

\[
\sum_{G'} |k + G| (k + G') \varepsilon^{-1} (G + G') H_{2,k} G' = \left(\frac{2 \pi}{\ell} \right)^2 H_{2,k} G, \quad (10)
\]

to satisfy the reciprocity condition, and hence the structure factors for the large (with a radius of \(r_1\)) and small (with a radius of \(r_2\)) circular PC cylinders encircling the origin and \(s\) is the shifting vector for a small cylinder of air along the \(x\)-direction. The dispersion relations of the predetermined three cases are also numerically investigated by using the plane wave expansion method [56] and are shown in Figures 2(d)–2(f). Note that all the band structure calculations and iso-frequency contour (IFC) analyses were conducted by the same method. The geometrical parameters \(r, d, r_1\), and \(r_2\) were set to 0.37\(\alpha\), 0.66\(\alpha\), 0.40\(\alpha\), and 0.15\(\alpha\), respectively.

FIG. 2 Geometrical representations of two-dimensional square-lattice PCs composed of a periodic array of dielectric (a) regular (symmetric) cylinders, (b) square cylinders, and (c) circular symmetric cylinders. The corresponding band diagrams are represented in (d)–(f), respectively. Through the dispersion-relation analyses, the geometrical parameters \(r, d, r_1\), and \(r_2\) were set to 0.37\(\alpha\), 0.66\(\alpha\), 0.40\(\alpha\), and 0.15\(\alpha\), respectively.

As can be seen in Figure 2(a), in the square lattice case with a lattice constant, \(a\), the corresponding lattice vectors are, \(a_1 = a\hat{x}\) and \(a_2 = a\hat{y}\) where \(\hat{x}\) and \(\hat{y}\) are the base vectors in the spatial domain. Then, the corresponding set of reciprocal lattice base vectors \((b_1, b_2)\) should be \(\left(\frac{2 \pi}{\ell} \hat{x}, \frac{2 \pi}{\ell} \hat{y} \right)\) in order to satisfy the reciprocity condition, \(a_i \cdot b_j = 2 \pi \delta_{ij}\), where \(\delta_{ij}\) is the Kronecker delta function [55]. The reciprocal lattice vectors then, \(G = lb_1 + nb_2\) where \(l\) and \(n\) are integers. Considering the circular (symmetric) PC cylinders with radii, \(r\), as in Figure 2(a), the structure factor is found from Eq. (13) as, \(S(G) = 2 f \frac{\varepsilon_0 |G|}{\varepsilon_0 + |G|^2}\), in which the function, \(f_1(\cdot)\), is the first order Bessel function of the first kind. For the rectangular PC case, as in Figure 2(b), the corresponding structure factor is, \(S(G) = f \sin \left(\frac{2 \pi d}{G_x} \right) \sin \left(\frac{2 \pi d}{G_y} \right)\), where \(G_x\) and \(G_y\) are the \(x\) and \(y\)-components of the reciprocal lattice vector, \(G\). When the symmetry is reduced in the PC unit-cell by etching an off-centered hole inside the PC rod (see Figure 2(c)), the corresponding structure factor transforms into \(S(G) = S_1(G) - \exp(-iG \cdot s) S_2(G)\). Here \(S_1(G)\) and \(S_2(G)\) are the structure factors for the large (with a radius of \(r_1\)) and small (with a radius of \(r_2\)) circular PC cylinders encircling the
4 WHAT DOES "CHIRALITY" MEAN IN CHEMISTRY AND PHOTONICS?

Several crystals and molecules exist in nature with a characteristic that even though they may have the same compositions, their physical and chemical properties may differ. In other words, despite having the same molecular formula, some types of compounds may exhibit different characteristics due to different structural arrangements of atoms. This phenomenon is known as isomerism, and compounds that have the same molecular structures are called isomers [59]. Isomers may have two forms: either structural (constitutional) isomers or stereoisomers. Structural isomers have identical molecular formulas, but different connectivity of atoms. For stereoisomers on the other hand, although the chemical structures and their atomic bonds are the same, they differ in spatial orientation, i.e., the positioning of the crystal compositions in space varies. Moreover, stereoisomers can be subdivided into two types: enantiomers and diastereomers. By definition, enantiomers are stereoisomers for which the mirror-image and the molecule itself cannot be superimposed [60]. Examples of well-known enantiomers are chiral molecules, which have the property of handedness (left and right-handed) [61]. The chirality property was discovered by the famous experiment of Louis Pasteur in 1848 [62]. He re-crystallized a salt of tartaric acid and obtained two kinds of crystals, with shapes that were mirror-images of each other. Thereafter, intensive studies of chiral molecules have revealed that mirror-image isomers, such as chiral crystals, may display different characteristics in terms of optical activity, viz. the optical response of the structures while interacting with light waves [63].

In a similar fashion, when a low-symmetry is introduced to the PC configuration so that the rotational symmetry of the PC unit-cell is broken, then the resulting PC structure and its mirror-image may not be superimposable. These types of low-symmetric PCs may be designated as Chiral PCs. Numerical calculations indicate that Chiral PCs and their images may react differently to light illumination. To be more specific, a basic two-dimensional chiral structure, such as a square-lattice PC configuration with C_1 symmetry (with no spatial-symmetry), is chosen, and the related dispersion relations as well as IFCs for both the low-symmetric PC and its mirror-image are compared. These results are presented in Figure 3. As shown in Figure 3(a), the large circular PC cylinder with radius, \(r_1 = 0.20a \), is placed at the origin and the circular rods with small radii, \(r_2 = 0.10a \), are located at the right-side of the larger PC rod. It is important to note that only the rotational symmetry of the proposed Chiral PCs is broken, whereas the translational symmetry is kept intact. In this case, the mirror-image structure in Figure 3(a) cannot be superimposed on the designed structure with C_1 symmetry, i.e. with no rotational symmetry, and, therefore, that type of structure can be designated as a Chiral PC. The dispersion diagrams of both square lattice PC configurations are investigated and plotted in Figure 3(b). The regarding PC cylinders are composed of silicon, with a dielectric permittivity, \(\varepsilon_d = 12 \) and the background is air, i.e., \(\varepsilon_b = 1 \). Although the calculated TM bands for both the Chiral PC and its mirror-image overlap at lower frequencies, they start not to coincide with each other at higher bands, especially along the edge of Brillouin zone, from \(\Gamma \) to \(M \). In addition, IFCs of the proposed Chiral PCs in Figure 3(a) are analyzed in order to better understand how the optical responses of chiral dielectric PCs differ depending on the direction of wave propagation. As an illustration, the IFCs of second and third TM bands for both the asymmetric chiral PC and its image are calculated and shown in Figures 3(c)-(f). It is known that the energy flow of light is in the direction perpendicular to the calculated IFCs [64]. Therefore, if the designed square lattice Chiral PC is excited by an incident beam along the \(\Gamma - X \) direction, with a centered frequency of \(a / \lambda = 0.402 \) (see Figure 3(c)), the propagating beam starts to deflect, and follows a tilted optical path inside the structure with a positive deflection angle. On the other hand, the incident beam with the same frequency propagates along the \(\Gamma - X \) direction inside the mirror-image Chiral PC with a negative deflection angle. Gray arrows have been inserted in Figures 3(c) and 3(d), in order to demonstrate the direction of tilted beam propagation inside the designed Chiral PC and its image. The comparisons of the dispersion relations of designed PC configurations in Figure 3(a) support the chirality idea: In other words, a dielectric PC structure which is not superimposable with its mirror-image can be considered as a chiral PC, since it may possess dispersive characteristics different from its mirror-image isomer.

There have been conducted numerous studies in literature that investigate PCs with chiral optical properties. Especially, optical activity characteristic has been reported before in different types of materials such as in cholesteric liquid crystals [65, 66], photonic metamaterials [67, 68] and plasmonic structures [69]. Moreover, circular dichroism effect is also reported in 3D PCs composed of polymeric helices [70, 71] and some potential applications of that chiral optical property are investigated [72]. Plum et al. experimentally verified chirality-induced negative index of refraction in 3D bilayered metamaterials with fourfolded rotational symmetry [73]. Apart from these, there are limited numbers of studies that demonstrate chirality phenomenon in semiconductor-based materials: a 3D rotationally stacked woodpile PC structure has been...
fabricated and a large optical rotation is observed in such semiconductor-based PCs [74].

There are also relatively few publications that study the effect of low-symmetry on chirality property: In one paper, an efficient polarization control of light is realized by using all-dielectric 2D planar PCs with four-fold rotational symmetry [75]. In our study, we numerically proved that keeping the direction of incident light illumination as the same, specifically designed 2D PCs with low-symmetry and its mirror image may optically respond in different manners at certain frequencies (see Figure 3). Chiral PCs either planar 2D or 3D have also been studied for modulating intensity of light and shaping light emission pattern [76, 77]. One other difference between the previously published results and the idea proposed in this article is the way of light interaction with the chiral photonic crystals. Incident light interacts with the chiral device along the out-of-plane direction. On the contrary, we allow light propagation in the plane.

In the following section, several low-symmetric PC studies previously conducted by the authors will be summarized, and based on these studies, some of the potential photonic device applications will be discussed.

5 POTENTIAL APPLICATIONS BASED ON OUR STUDIES

There have been an intensive number of studies to investigate all-dielectric two-dimensional PCs that have an intentionally introduced reduced symmetry; to search for their anomalous optical characteristics and to implement these types of PCs in optical device design. In this section, different potential photonic applications are discussed. Firstly, symmetry reduction in PC unit-cells may provide complete PBGs (CPBGs), which occur due to overlapping of TE and TM gaps. Several different approaches have been proposed in the literature [78]–[80]. In one of our previous studies [81], a low-symmetric annular PC structure, called a modified annular PC (MAPC), was designed to obtain larger CPBGs. The designed structure is schematically shown in Figure 4(a). An air hole (or a PC rod) with radius, \(r_2 \), was introduced into the PC rod (or an air hole) having the radius, \(r_1 \), where the background was air (dielectric with the permittivity \(\varepsilon_b \)). The inner unit was off-center with a distance parameter, \(s \), and rotated with respect to the lattice axis by a rotation angle, \(\theta \). Figure 4(b) and 4(c) represent the schematic diagrams of square and triangular MAPC lattices in cases where the background is either \(\varepsilon_b = 1 \), or Si, \(\varepsilon_b = 3.45 \). In all the configurations, the lattice constant was fixed at \(a_1 \). The dispersion relations of a symmetric-type annular PC as well as a MAPC with \(C_3 \) symmetry were calculated and are presented in Figure 4(d) and 4(e), in order to better understand the effect of symmetry-reduction. As can be seen in Figure 4(d), CPBG regions do not exist in the symmetric annular PC case; whereas CPBG regions occur in the MAPC case (see Figure 4(e)). Symmetry breaking in the primitive cell lifts the degeneracies in the band structure. As a result, CPBGs appear in the band diagrams [82]. The band gap regions are shaded in Figure 4(e), to clearly show the forbidden frequency intervals. The square lattice MAPC rods with off-centered air holes having the parameters of, \(\theta = 45^\circ \), \(r_1 = 0.360a \), \(r_2 = 0.150a \), and \(s = 0.180a \), the calculated CPBG width was \(\Delta \omega/\omega = 7.06\% \) that lies between \(a/\lambda = 0.5851 \) and \(a/\lambda = 0.6279 \). There also exists a CPBG region lying in the normalized frequency range, \(a/\lambda = 0.4441 - 0.4671 \), having a CPBG width, \(\Delta \omega/\omega = 5.05\% \). A CPBG map is prepared as a function of inner radius and shown in Figure 4(f). The difference between the upper and lower limits of the bands gives the CPBG width, \(\Delta \omega \). According to the CPBG map, band gap regions shift upward with increasing inner hole radius, since the resulting filling factor reduces. Moreover, the CPBG around \(\Delta \omega/\omega = 6.30\% \) was calculated with the inner hole radius, \(r_2 = 0.125a \). These results support the use of low-symmetric PCs for polarization-insensitive photonic device applications.

Mode-order conversion applications using low-symmetric PCs have already been studied [83]. For that purpose, a heterostructure is formed by regular (symmetric) PCs and \(C_3 \) symmetric PCs (MAPCs). It should be noted that we fix \(\theta = 90^\circ \) to implement heterostructure investigated in Figure 5. The working principle is that an incident beam is exposed to phase retardation while propagating through the heterostructure. Such a type of phase delay originates from the phase index difference between the conventional PC and MAPC. Figure 5(a) shows the band structures of both the symmetric PC and MAPC when radii of regular PCs are \(r = 0.36a \) and geometric parameters of MAPCs are fixed as \(\{ r_1, r_2, \Delta s \} = \{ 0.40a, 0.19a, 0.15a \} \). The corresponding phase refractive indices are plotted in Figure 5(b). The shaded region in Figure 5(a) designates the frequency interval in which a linear pattern is observed in the second band of the PC and MAPC with respect to the wavevector. By employing the band diagrams shown in Figure 5(a), the corresponding phase indices are obtained depending on normalized frequencies from the formula, \(n_p = -k/\omega \), where \(k = 2\pi/\lambda \). In this expression, the parameters, \(k \) and \(\omega \), represent the relevant wavevector and angular frequency, respectively. The corresponding phase indices for both symmetric and low-symmetric PCs were calculated and are demonstrated in
The FDTD results indicate that the fundamental even mode profile, Figure 5(e) represents a snapshot of this beams electric field. A nearly constant phase refractive index difference, $\Delta n_p = 0.0634$, was calculated in a broad frequency interval, $a/\lambda = 0.275 - 0.350$, which is represented by the shaded region in Figure 5(b). This type of phase index difference causes the propagating light to travel at different phase velocities and, hence, different optical path lengths occur inside the heterostructure. Therefore, a π-phase shift can be achieved at the output by selecting the length of the MAPC region, which is given as d_m in Figure 5(c). The required length, d_m, can be calculated by the following expression, $\Delta \phi = \Delta n_p \cdot k(\lambda) \cdot d_m$, where $\Delta \phi$ represents the output phase shift. In our design, the longitudinal lengths of MAPCs, d_m, and the heterostructure, d, were adjusted to 15a and 25a, respectively, in order to achieve a π-phase shift at the output channel. The width of the structure, w, was set to 8a. Finite difference time domain (FDTD) analyses were also conducted to investigate how low-symmetric PCs affect the shape of propagating beams’ mode profiles [84]. Figures 5(d) and 5(e) compare the beam propagation inside regular PCs and the designed heterostructure. The structures were excited by a guided fundamental TM mode (TM0), with a center frequency fixed at $a/\lambda = 0.325$. The term “mode” means the field amplitude shape of allowed modes (E_z component for TM modes) inside the structure. As can be seen from the steady-state field distribution in Figure 5(d), the incident beam still propagates with a fundamental TM0 mode profile, despite reaching the end of the regular PC structure. On the other hand, the propagating beam in the designed PC heterostructure is exposed to π-phase difference at the end; Figure 5(e) represents a snapshot of this beams electric field. The FDTD results indicate that the fundamental even mode profile (TM0) can be efficiently converted into the odd (TM1) mode or to higher order TM modes, just by introducing a low-symmetric PC region inside the regular PC configuration.

A non-diffracting dispersive effect called self-collimation or, sometimes, super-collimation and its various optical applications have been studied intensively [85]–[87]. Such a dispersive property enables guiding of light, while propagating inside a PC structure, without significant diffraction. Super-collimation characteristic have already been investigated for low symmetric PCs over a broad bandwidth [88]. A C4 symmetric PC is proposed in order to achieve super-collimation over a wide frequency interval. The design two-dimensional PC configuration is called a star-shaped PC (STAR-PC). Low-symmetry was introduced in the scale of PC unit-cell and the resulting primitive cell is presented in Figure 6(a). The proposed configuration has four vertices and eight edges. The width of each edge is denoted by w and internal angle, θ, of each vertex is fixed at $\theta = 45^\circ$. The width of the edges was fixed at $w = 0.30a$ and, thus, the resulting filling factor was $f = 3 \cdot w^2 = 0.27$. The investigated PC cylinders were composed of silicon, $\varepsilon_d = 12$ and the background was air, i.e., $\varepsilon_b = 1$. Reduction of rotational symmetry in the unit-cell has significant effects on the dispersion characteristics of PCs, especially at higher bands. To better understand the effect of low-symmetry on the dispersion relations of PCs, the equi-frequency contours (EFCs) of both a C4 symmetric STAR-PC and a symmetric PC were calculated, with the same filling factor and corresponding EFCs at the fifth TM band, and are shown in Figures 6(b) and 6(c), respectively. Linear sections in the curves appear for the low-symmetric PC case, which is shaded in Figure 6(b), and, therefore, that bring about a strong super-collimation property over a large bandwidth, $\Delta \omega = 16.42\%$, in the frequency range, $a/\lambda = [0.492, 0.580]$. On the other hand, as can be seen in Figure 6(c), the regular PC has flat contours in the frequency interval, $a/\lambda = [0.577, 0.581]$, and, thus, the available bandwidth is $\Delta \omega = 0.69\%$, which is very small compared to the STAR-PC case. FDTD analyses have also been conducted in order to observe the beam evolution inside the designed structure. For this reason, a continuous TM polarized beam was propagated in air and in the STAR-PC, and their steady-state electric field patterns are depicted in Figures 6(d) and 6(e), respectively. Dashed lines in the figures represent the envelope of the propagating beam. Moreover, arrows inserted in the figures indicate the direction of source-illumination. The width of the beam is 11a and the operating frequency is $a/\lambda = 0.540$. As can be clearly seen in Figures 6(d) and 6(e), after propagation over a distance, $L = 200a$, there is no observable spatial broadening in the STAR-PC configuration, whereas a significant spreading of beam is observed in air. The calculated results show that by means of low-symmetric PCs, one may realize super-collimation based single-mode optical devices, such as optical interconnects and routers, without substantial light diffraction.

As we discussed previously, breaking the structural symmetry in the unit-cell causes dramatic effects on the dispersion characteristics. In the dispersion diagram for low symmetry structure, the first band behaves like an isotropic medium for lower frequencies. However, for higher bands, considerably different EFCs occur due to the lack of symmetry in the PC unit-cell, as can be seen in Figure 6(b). It is important to note that the higher frequencies are influenced strongly by the symmetry
of the primitive PC cell. Moreover, even a rotational operation on the PC unit-cell provides intriguing characteristics, such as wavelength selectivity [89]. The proposed structure is shown in Figure 6(a), and its geometrical parameters are represented in Figure 7(a). This structure was rotated through 45° in a clockwise direction. The resulting structural parameters (filling factor, internal angle, dielectric permittivity, and air background) were kept the same as the structure in Figure 6(a).

The rotation of the symmetric PC structure in C_4 caused tilting of the IFCs at the fifth TM band, which is presented in Figure 7(b). As can be seen in that figure, the amount of tilt in the nearly flat EFCs (self-collimation contours) increases with the normalized frequency. Therefore, a light beam can follow different paths (directions) inside the periodic structure due to the tilting self-collimating effect. This property may allow for the spatial resolution of different wavelengths at the output of the PC structure. The EFCs for the frequencies at which the wavelength selectivity behavior appears are presented in Figure 7(c), and the corresponding Brillouin zone of the STAR-PC is shown as an inset in the figure. The corresponding frequency contours are selected from the fifth band EFCs in Figure 7(c), and lie between $a/\lambda=0.520$ and $a/\lambda=0.568$, with a broad bandwidth, 8.82%. Numerical analyses have also been conducted in order to examine the wavelength division behavior of the STAR-PCs. For this reason, a STAR-PC was sequentially illuminated by a continuous TM polarized beam, and Figure 7(d) shows their steady-state electric field patterns at three selected wavelengths ($\lambda_1 = 1621.5$ nm, $\lambda_2 = 1550$ nm and $\lambda_3 = 1484.5$ nm) within the region of interest. The cascaded slices taken at the output of the field distributions are shown to demonstrate the spatial shifts of the output signal. The spatial separation of output signals in terms of their wavelengths is accomplished by means of diffraction-free beam propagation (tilted self-collimation). By this means, sufficient spatial shifts can be introduced between each channel, since the spatial beam profile is almost preserved as it propagates inside the structure. This phenomenon increases the potential of STAR-PCs as a wavelength selective medium. To better understand the bandwidth enhancement for super-collimation, the role of the order of the symmetry reduction will be further explored in the future.

Other type of low-symmetric unit cells can produce super-collimation and wavelength selectivity. On the other hand, bandwidth and wavelength sensitivity may change from structure to structure. Since these properties appear at relatively high band, feature sizes in terms of sharp corners enhance the observed physical characteristics.

Apart from the above-mentioned applications, by using the intrinsic dispersive characteristics of the low-symmetric PCs, different types of photonic devices such as beam routers, splitters, and deflectors can be realized [90]. Moreover, polarization-independent waveguide design can be implemented by PCs with reduced-symmetry [91].

6 FUTURE EXPECTATIONS AND CONCLUSION

In this review paper, we investigated the effect of symmetry-reduction on the dispersive characteristics of all-dielectric PCs. Breaking the rotational symmetry of a PC unit-cell produces various anomalous optical characteristics such as complete PBG, tilted self-collimation, super-collimation, and
wavelength selectivity. Besides, the low symmetric unit-cell provides additional parameters to control the dispersive features of Bloch modes. Furthermore, the symmetry-reduction in PC unit-cell scale produces a novel feature named “chirality”, which has not been thoroughly studied for all-dielectric PCs. Using such intrinsic properties of low-symmetric PCs, it is feasible to design a variety of photonic integrated devices such as polarization-insensitive waveguides, beam routers/deflectors, splitters, and wavelength demultiplexers. Moreover, it is important to investigate these types of photonic media in the presence of point or line defects. Resonance modes in the cavities can be manipulated by the reduced symmetry in a PC unit-cell. Dispersion management of waveguide modes may uniquely sustain slow light propagation.

As a future goal, we intend to study the symmetry-reduction in PCs by rearranging the lattice periodicity into quasi-periodic and disordered lattices. Moreover, we will investigate the cavity and resonator effects in low-symmetric PCs by introducing intentional perturbations (point and line-defects) inside the all-dielectric periodic media. We also plan to conduct detailed investigations of all-dielectric chiral PCs. Further investigations are required to fully exploit the potential of symmetry reduction and the chirality concept in photonic crystals.

7 ACKNOWLEDGEMENTS

HK acknowledges partial support of the Turkish Academy of Science.

References

