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Principal component analysis in the spectral analysis of
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Dynamic laser speckle is a phenomenon that interprets an optical patterns formed by illuminating a surface under changes with coherent
light. Therefore, the dynamic change of the speckle patterns caused by biological material is known as biospeckle. Usually, these patterns
of optical interference evolving in time are analyzed by graphical or numerical methods, and the analysis in frequency domain has also
been an option, however involving large computational requirements which demands new approaches to filter the images in time. Principal
component analysis (PCA) works with the statistical decorrelation of data and it can be used as a data filtering. In this context, the present
work evaluated the PCA technique to filter in time the data from the biospeckle images aiming the reduction of time computer consuming
and improving the robustness of the filtering. It was used 64 images of biospeckle in time observed in a maize seed. The images were
arranged in a data matrix and statistically uncorrelated by PCA technique, and the reconstructed signals were analyzed using the routine
graphical and numerical methods to analyze the biospeckle. Results showed the potential of the PCA tool in filtering the dynamic laser
speckle data, with the definition of markers of principal components related to the biological phenomena and with the advantage of fast
computational processing.
[DOI: http://dx.doi.org/10.2971/jeos.2014.14009]
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1 INTRODUCTION

Dynamic laser speckle, also known as biospeckle when ap-
plied to biological materials, is an optical technique that pro-
cesses the interference patterns formed when a material is il-
luminated by coherent light. It is a non-destructive technique
and that has been validated as a tool for analysis and quantifi-
cation of biological activity in the material under study [1].

The term ‘biological activity’ expressed in the context of
speckle does not present a precise definition and it is under-
stood as the result of phenomena such as the Doppler effect,
Brownian motion, variations of the refractive index, structural
and molecular motions occurring in the material analyzed,
among others [2, 3].

Dynamic laser speckle technique has been used in several ar-
eas of research, such as in medicine, industrial processes and
agriculture. Some examples of recent application of this tool
are the works of Zakharov et al. [4] imaging blood flow in
rodent brain, Mavilio et al. [5] studying the process of paint
drying, Ansari and Nirala [6] monitoring the maturation of
Indian fruits, among others. In addition, the high number of
applications of biospeckle brings with themselves the need for

techniques of image and signal processing that can help in the
interpretation, and offer additional information derived from
these optical interference patterns.

The analysis of the data from optical interference patterns
can be accomplished using graphical and numerical ap-
proaches [1], in turn, Cardoso et al. [7] associated graphical
and numerical analysis using the frequency domain to create
signatures and isolate some phenomena.

There are many studies analyzing the spectral information of
the biospeckle data in different types of material and most use
either Fourier or wavelet transforms as tools to analyze the
data in the frequency domain. Each method has distinct char-
acteristics and properties. The Fourier transform is suited for
stationary signals, which is not the case of the dynamic laser
speckle as reported by Sendra et al. [8], and this can compro-
mise or limit the use of the technique.

Moreover, wavelet transforms have shown useful results in
the segmentation of tissues, definition of frequency markers,
and data filtering, as demonstrated by Sendra et al. [9] in the
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assessment of apple damage and seed germination, as well as
by Cardoso et al. [7] studying seeds of maize and bean and an-
imal cancer. However, the wavelets transform demands com-
plex computational operations, as well as requiring some sub-
jective choices such as that of a mother wavelet. Argoud et
al. [10] claimed that the methodology for selection of the base
function is not clear yet.

Despite the success of using Fourier and wavelet transform in
frequency analysis, there are other filtering techniques in the
literature which can be considered as alternative, overcoming
the limitations of the methods used currently and providing
information about this complex pattern of optical interference.
Additionally, even though existing methods that have pre-
sented important contributions to dynamic speckle analysis,
it may still be considered a complex problem and, therefore,
alternative methods should be examined in order to under-
take a thorough analysis.

In this context, statistical tools, such as principal component
analysis, stand out as an option to analyze biospeckle data.
As described by Rabal et al. [11], the statistical techniques are
indicated for data with random nature and with time evolu-
tion, which is the case with dynamic laser speckle. In the basis
of the dynamic laser speckle phenomenon, the laser light scat-
tering in a dynamic way can be related to a multiple range
of physical and chemical phenomena that can be the consid-
ered the key factor to understand and correlate the dynamic
scattered output with the analyzed phenomenon itself [12].

Principal component analysis - PCA - is a classic technique
for multivariate statistical analysis of data, which consists
essentially in transforming orthogonally a set of correlated
observed variables into a new set of uncorrelated variables,
called the principal components. The transformation is ac-
complished by calculation of the eigenvalues and eigenvec-
tors of the data covariance matrix [13, 15].

PCA has been used in many applications as a tool to reduce
the data volume with the least possible loss of information,
classification and clustering of data, extraction and identifica-
tion of patterns and also filtering of signals [16, 17]. Papers
presented by Souza Filho and Dinniss [18] and by Chen and
Qian [19] confirm the potential of principal component analy-
sis as filtering technique.

In this context, the present work aims at proposing the us-
age of this multivariate statistical tool as an alternative for the
spectral analysis of the dynamic laser speckle signal. The pro-
posed method consists in applying the PCA technique as a
preprocessing tool for biospeckle signal analysis. The com-
bination of PCA and existing methods like Fujji and GD is
shown and promising results have been achieved for real data.

The next section reviews the background theory of the meth-
ods used in this work. The first subsection describes the tech-
nique of principal component analysis, and Sections 2.2 and
2.3 relate the Fujii and GD methods of graphical analysis of
biospeckle patterns while the last part presents the use of the
logarithm unit to carry out numerical interpretation of the
data.

2 THEORY

2.1 Principal component analysis (PCA)

Principal component analysis (PCA) is a multivariate statisti-
cal technique that describes a set of correlated observations in
terms of a new set of orthogonal and uncorrelated variables,
called principal components, which are linear combinations of
the original variables [20].

The transformation of the data to the PCA domain is per-
formed by the decomposition of the covariance matrix into
eigenvalues and eigenvectors, and this technique has been
used in several application areas under different approaches,
such as use as a denoising method, and with the advan-
tage of being a convenient tool from a computational view-
point [14, 15, 21].

Principal components analysis begins with the organization
of the data in a matrix X of dimension M × N, in which M
represents the number of observations and N the number of
variables, as illustrated in Eq. (1).

X =


x11 x12 · · · x1N
x21 x22 · · · x2N

...
...

. . .
...

xM1 xM2 · · · xMN

 (1)

In order to avoid points distant from the data center having a
greater influence than nearby points, (as would arbitrarily oc-
cur when data are in different units), the mean of each variable
is removed from data. This process is called centralization of
data and it is represented by Eq. (2).

yi = xi − µ(xi) (2)

where yi correspond the data vectors centralized around of
the mean, xi are the N sample vectors studied and µ(xi) con-
sists of the mean of the sample vectors, which can be calcu-
lated by Eq. (3).

µ(xi) =
1
m

m

∑
j=1

xi(j) (3)

The variables or sample vectors, as it is called by Zhang et
al. [14], are each column of X and are expressed mathemati-
cally by Eq. (4).

xi = [x1i x2i · · · xMi]
T (4)

The data matrix organized and centralized on the mean is
used to compute the covariance matrix as shown in Eq. (5).

CY = E(Y · YT) (5)

in which Y and YT are, in order, the data matrix centered on
the mean and its transpose, and CY is the covariance matrix.

The diagonal elements of CY represent the statistical variance
while the off-diagonal elements characterize the covariance
between variables. Null diagonal covariance means that the
random variables are uncorrelated [22], though we cannot
affirm about the statistical independence for the biospeckle,
since the speckle patterns in time cannot be represented by a
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Gaussian behavior. Furthermore, the covariance matrix is real
and symmetric, which permits us to decompose CY into a set
of eigenvalues and orthogonal eigenvectors [15] using Eq. (6).

CY = V ·ΛVT (6)

where V = [Φ1 Φ2 · · · Φm] is a M×M orthonormal eigenvec-
tors matrix and Λ = diag{λ1, λ2, · · · , λm} is the diagonal ma-
trix of eigenvalues, in which λ1 ≥ λ2 ≥ · · · ≥ λm.

The eigenvectors represent the contribution to each of the
original axes to the composition of the new axes, the princi-
pal components. The eigenvalues, in turn, are associated with
the original amount of the variance described by each of the
eigenvectors [13, 23].

The last step of the analysis is the construction of the uncor-
related data matrix that is also known as the principal com-
ponent scores, and which is formed by the product of the
orthonormal eigenvector matrix V and the data matrix orga-
nized and centralized on the mean Y, as expressed by Eq. (7).

PC = VT · Y (7)

in which PC is the matrix of uncorrelated principal compo-
nent scores.

From the data in the PCA domain, it is possible to extract
signal characteristics, and according to Zhang et al. [14], the
signal and the noise of a data set can be better distinguished
in the PCA domain, since the signal energy and noise energy
will concentrate in different subsets of the uncorrelated data.
Because of this ability, PCA is referred to as a statistical data
filtering method.

We can also consider the inverse PCA transform, which is
used to back transform the principal component scores (un-
correlated data), thereby reconstructing the original dataset.
Eq. (8) presents the mathematical expression of the inverse
PCA transform.

X = (V · PC) + µ(X) (8)

The inverse PCA transformation is a useful operation since
reconstruction of original data with only some specific PCs,
discarding the rest of them, can enhance important features
not previously easily seen in the data and/or remove the con-
tribution of undesirable features such as noise. Such an oper-
ation is also widely used for data compaction.

2.2 Fuj i i method for biospeckle

One way to analyze the interference patterns of the dynamic
laser speckle is the use of graphical methods, which display
maps of the spatial variability of the biological activity of the
material studied, and the Fujii method is a tool that fits this
classification.

Fujii et al. [24] presented this technique in the analysis of a se-
quence of dynamic laser speckle images. The method consists
of the summation of the weighted differences between each

image and the subsequent image (Eq. (9)).

Fujii (x, y) =
N

∑
k=1

∣∣∣∣ Ik(x, y)− Ik+1(x, y)
Ik(x, y) + Ik+1(x, y)

∣∣∣∣ (9)

where Fujii (x, y) is the resulting image and Ik(x, y) is the gray
level in the coordinates x and y of the kth image.

The result is a new image, in which it is possible to visualize
the spatial variability of biological activity. Regions of high ac-
tivity are represented in light tonalities while dark areas illus-
trate regions of low biological activity.

In addition, a feature of the Fujii method is the amplification of
movements in darkest areas, making the images clearer when
compared with other approaches such as the generalized dif-
ference method [3].

2.3 General ized difference method (GD)

The generalized difference approach was introduced by
Arizaga et al. [25] as an alternative to the Fujii technique.
The method generalized the summation of the differences of
the intensities along the whole sequence of images and the
weighting factor was eliminated (Eq. (10)).

GD (x, y) = ∑
k

∑
l
|Ik(x, y)− Ik+1(x, y)| (10)

where GD (x, y) is the resulting image, and Ik(x, y) is the pixel
intensity located in the coordinates x and y of the kth image.

2.4 Logarithm unit

Comparison between the results before and after the adoption
of the filtering promoted by PCA of the biospeckle data were
carried out by means of the logarithm scale, in particular by
using the decibel scale.

The decibel (dB) is defined by a logarithmic relationship that
expresses the ratio of a value being measured with a refer-
ence [26]. Eq. (11) describes mathematically the logarithmic
unit in decibels.

dB = 10 log10

(
W1

W2

)
(11)

where dB is the result of the logarithmic relationship ex-
pressed in dB, and W1 and W2 are the energies of the signal
studied and the reference signal, respectively.

Negative dB results indicate that the data processing pro-
moted attenuation of the signal energy, whereas positive val-
ues express energy gain after application of the analysis.

The energy of a discrete signal k[n] is the summation of
squares over time as shown in Eq. (12).

Wk =
N

∑
n=1
|k[n]|2 (12)
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FIG. 1 Organization of the concatenated images in a new data matrix.

3 MATERIALS AND METHODS

In order to evaluate the proposed method, a database from
a maize fruit illuminated by laser was used [27], and the
approach adopted was the back-scattering. In the back-
scattering approach adopted, the laser beam reached the
object in a plane and the scattered light that returned from the
sample was collected by a CCD camera in the same side of
the plane where the laser was positioned. The images in time
were acquired in the CCD were processed by image analysis
and by statistical procedures in order to quantify or qualify
the biospeckle phenomenon. In this work, the database from
the illuminated maize had 64 gray level images, each with
a resolution of 490 by 256 pixels, and they were collected
using the experimental setup with a time rate of 0.08 seconds.
The time rate adopted was enough to acquire all the relevant
frequencies in the signal, since the biological activity of the
maize seed is below 6 Hz [7, 9]. The images were collected in
order to get a sufficient focus of the maize, as well as with a
clear definition of the speckle grains, avoiding the saturation
of the light or the sub-exposition on the whole sample. Each
image of the database was concatenated and the signals
formed were vertically arranged side by side following the
sequence of the images. Figure 1 illustrates the construction
of the concatenated images in the data matrix X.

The data matrix X was transformed to a set of statistically un-
correlated coordinates by the PCA technique, converting the
original data to the PCA score domain. In order to study the
contribution of each principal component to the composition
of the original signal, some principal components were elim-
inated before application of the inverse PCA transform, and
this selection process of the PCs was performed using three
approaches:

a) Emphasis on the first g principal components;

b) Using only the last h PC’s;

c) A random choice of some PC’s.

After selecting PCs, the inverse PCA transform was obtained.
Then, the inverse process of concatenating image was done.
Afterward, the reconstructed data were analyzed graphically
by the Fujii and GD methods. Figure 2 summarizes the pro-
posed methodology in a flow chart.

In order to carry out a numerical analysis and to assist the
interpretation of the processed data, one line each from the
Fujii and GD images resulting of the graphical methods was
selected, as illustrated in Figure 3. Each line was shown in the
same figure to compare its behavior in terms of amplitude. In
addition, quantitative analyses were also carried out by calcu-
lating the energy of the chosen lines on the dB scale.

4 RESULTS AND DISCUSSION

4.1 Signal reconstruction using the first g
principal components

Figure 4 illustrates the biospeckle activity maps of the maize
fruit analyzed using the PCA technique, in which we used the
first g principal components in the reconstruction process of
the signal. The areas of high biological activity are illustrated
by the light gray in the images whereas the dark shades are
linked to low activity (in pseudocolors red means light gray
and blue means dark gray). Furthermore, the images named
as Original presented in the Figures 4(a) and 4(b) are, respec-
tively, the Fujii and GD graphics of the biospeckle of the maize
fruit unprocessed with the PCA technique, and they are the
reference images for the data analysis.

The total reconstruction of the data, using all 64 principal com-
ponents in the inverse transform, presented images visually
identical to the reference in both graphical methods, in Fig-
ure 4(a) and Figure 4(b) as expected. Moreover, decreasing of
the number of the first PCs used in the inverse PCA transform
attenuated the embryo information and kept the endosperm
separation, so filtering the data and segmenting the tissues.
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FIG. 2 Methodology used.

FIG. 3 Position of the line selected in the resulting images.

Figure 5 shows the selected rows in the GD images where it
is possible to observe the filtering effect in the tissues of the
embryo and endosperm for different values of g, and Table 1
presents the results of the numerical analysis, based on the
data from Figure 5. In the embryo it was expected the highest
activity since there are live tissues and water movement con-
tributing to the Doppler beating of the scattered light, though
in the endosperm the expected activity should be lower than
in the embryo since there is no presence of live tissues in there,
but only a reserve of nutrients [27]. Therefore, the outputs pre-
sented the ability to tag that difference with different levels
depending on the g values of PCA adopted.

Negative decibel values in Table 1 indicate attenuation of the
energy and positive values denote gain of energy in the ac-
quired line. Null values of decibels mean that the two signals
compared have the same energy.

The dB values (Table 1) oscillated between 0.05 and 6.86 dB
for embryonic tissue whereas for endosperm tissue they kept
close to zero, except for g equal to 4, which presented an at-
tenuation of 1.70 dB. These results show numerically a higher
attenuation of the embryo data relative to endosperm. Such
attenuation is shown in the Figure 5, where the embryo sig-
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(a)

(b)

FIG. 4 Fujii (a) and GD (b) images performed by PCA analysis with the signals reconstruction using the first g PCs and the correspondent original images.

Maize fruit Embryo tissue Endosperm tissue
dB R2 dB R2 dB R2

g = 64 -0.05 0.99 -0.05 1.00 -0.05 0.96
g = 32 -0.72 0.91 -1.29 0.94 0.15 0.96
g = 16 -1.66 0.70 -2.87 0.80 -0.07 0.94
g = 4 -4.28 0.25 -6.86 0.41 -1.70 0.67

TABLE 1 Decibels and correlation index of the signals reconstructed using the first g principal components and of the original signal.

nal exhibits large changes for the different g values, decreas-
ing the normalized amplitude with the decrease of g, whilst
the endosperm signal remained near the original curve. In ad-
dition, the correlation index presented lower fluctuations in
the values for the endosperm tissue, which also demonstrates
preservation of the characteristics of the endosperm signal
and modifications of the embryo signal. The better estimation
of the level of those noise and variations in the signal can be
addressed by some techniques [28] which can validate the fil-
tering outputs at each case.

Kaiser [29] proposed a statistical criterion to define the opti-
mal number of principal components to represent a dataset.
Applying this criterion to the database used here, the opti-
mal number of principal components was 16, which explain
94% of the variance of the data. Therefore, setting g equal to
4, which describes 89% of the data variance, is considered too
low to represent the dataset by the criterion of Kaiser [29]. It
explains the achieved attenuation in the amplitude of the en-
dosperm representation signal and the low correlation index.

In this context, the inverse PCA transform using only the first

g PCs implements a low pass filter in the time expression of
the images, attenuating amplitudes associated to the high fre-
quencies (embryo) and preservation of the low frequencies,
which represents the endosperm activity.

According to Scalassara et al. [30], the first principal compo-
nents contain information of a large proportion of the signal
variance and the last contain basically the noise variance (high
frequency signal). Consequently, the use of the first g PCs pro-
duces a data filtering with elimination of high frequency ac-
tivities, related to the images varying in time domain, which
means concerning to the temporal Fourier transform.

4.2 Signal reconstruction using the last h
principal components

Figure 6 presents the results of the PCA analysis based on sig-
nal reconstruction using the last h PCs, in which are illustrated
the Fujii and GD maps, and the selected line in the graphics
output with the behavior of the signals for different values of
h, respectively. Figures 6(a) and 6(b) show similar graphical re-
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FIG. 5 Filtering effect for different values of g used in the inverse PCA transform.

Maize fruit Embryo tissue Endosperm tissue
dB R2 dB R2 dB R2

h = 64 -0.05 0.99 -0.05 1.00 -0.05 0.96
h = 32 -1.89 0.58 -0.49 0.83 -6.97 0.28
h = 16 -1.97 0.52 -0.99 0.74 -4.65 0.19
h = 4 0.42 0.42 0.06 0.46 1.02 0.21

TABLE 2 Numerical analysis for signals reconstructed using the last h principal components.

sults to Fujii and GD methods, with maps visually identical to
original pictures for h = 64. In addition, we note the emphasis
in the embryonic part by decreasing the number of PCs.

These results show that the preprocessing with PCA using the
last h principal components served as a high pass filter, high-
lighting the high frequencies, such as in the embryonic por-
tion, and filtering of the lowest frequencies, which are linked
to the biological activity of the endosperm, as discussed by
Cardoso et al. [7].

Quantitative results point out higher attenuation in the en-
dosperm activities for low values, achieving -6.97 dB (h = 32)
and a correlation index of 0.19 (h = 16), summarized in the
Table 2. Figure 6(c) allows us to visualize the filtering effect in
the endosperm signal, where the reconstructed lines present
amplitudes considerably different from those of the reference
signal, except for h = 64, which corresponds to the total re-
construction of the original signal.

Otherwise, the results for the embryo signal presented low os-
cillation of the decibel values, where the highest attenuation
achieved was -0.99 dB for h = 16. The correlation indices (Ta-
ble 2) also kept high values for different h, except for the last
4 PCs. These results show the preservation of the information
retained in the high frequencies, thereby performing a high
pass filter by PCA.

4.3 Random select ion of some principal
components to applicat ion of the
inverse PCA transform

Figure 7 illustrates four GD images in which the signals were
reconstructed using a small and random number of principal
components.

The goal of using this specific and random number of princi-
pal components is to combine both high and low pass filters
obtained from PCA in order to improve the results of Fujii
and GD methods. Use of high pass filters, low pass filters or
band pass filters allows us to define small spectral ranges in
which the characteristics of biological, physical or chemical
phenomena are concentrated and occurring more intensely,
the frequency markers as it is called by Sendra et al. [9] and
Cardoso et al. [7].

In principal component analysis, the terminology used is
based on the principal component scores and loadings, and
not frequency, but the signal reconstruction using random and
specific number of PCs opens an option to define markers of
principal components and associate them to biological phe-
nomena, as presented in the Figure 7. The characteristic of the
biospeckle signal allowed the use of the PCA as a filtering tool,
based in the advantage of performing as a non-parametric and
adaptive method, which is desirable for practical implemen-
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(a)

(b)

(c)

FIG. 6 Biological activity according to Fujii (a) and GD (b) techniques and the filtering effect in the embryo and endosperm tissues for different numbers of PCs used in the signal

reconstruction (c).

tations. In addition, the PCA filtering presents the advantage
of the reducing of the computational time consuming which
is relevant in the quasi-online applications.

The first image presented in the Figure 7 is the signal recon-
struction using the PCs from 1 to 4 followed by the GD pro-
cessing, which highlighted information from the endosperm

and filtered the embryo signals. Thus, the PCs interval 1–4 can
be considered as a marker of principal component for biolog-
ical activity of the endosperm tissue of the maize fruit.

The same perception occurs in the third image of the Figure 7,
in which the PCs from 32 to 36 also are markers of principal
components but for biological activity of the embryonic tissue.
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FIG. 7 GD images resulting of the signal reconstruction using a short and random number of principal components.

The result of the analysis emphasized the embryo and attenu-
ated information from endosperm tissue in the GD image.

Finally, the GD image constructed using the signals recon-
structed from 8 to 12 PCs (second image of the Figure 7), im-
proved the quality of the output however without any mark.

5 CONCLUSION

Principal component analysis was proposed as tool to spec-
tral analysis of dynamic laser speckle data and showed to be a
powerful tool to analyze biospeckle data, allowing the imple-
mentation of filters with different frequency pass band ranges
for data analysis concerning to the temporal Fourier trans-
form.

The proposed PCA based method allowed the decomposi-
tion of biological activity in the endosperm and embryo of
the maize seed example, with the advantage of a blind source
separation technique with fast computational processing, in
which the orthogonal basis functions used for data decom-
position are statistically optimum fitted. In addition, in com-
parison to conventional low-pass and high pass filters, the
PCA based filtering has the advantage of performing as a non-
parametric and adaptive method, which is desirable for prac-
tical implementations.

The proposed method also provided tissues segmentation of
the biological materials, improving the visual quality of the
final images and the definition of markers of principal com-
ponents of the biological phenomena, which supports its po-
tential for biospeckle data analysis.
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