J. Europ. Opt. Soc. Rap. Public. 8, 13079 (2013)

WWW.]€0S.0rg

Dynamics of a chain of optically coupled micro droplets
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We study a chain of fluid droplets excited by two incoherent laser beams. Such structured object is merely an array of spherical lenses,
that can guide a TEMy, optical mode. Taking into account the optical forces exerted by two counterpropagating beams, we show that the
droplets can be trapped and the chain auto-organizes in the optical potential. The model takes into account the possible coalescence of
several droplets, and shows that the droplet size can increase before they become trapped at stable postitions. For some input beam
parameters (beam waist size and position), we have observed dynamic trapping : the droplets experience collective oscillation. Meanwhile,

the beam shape evolves periodically in time.
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1 INTRODUCTION

Trapping of neutral Rayleigh particles by a single laser beam
has been demonstrated by Ashkin more than 20 years ago
[1]. Since then, much work has been devoted to the trap-
ping of nanometric and microscopic particles, and applica-
tive developments have been proposed, concerning on-chip
biology [2], microscopy [3], optofluidics [4, 5]. Typically, the
trapping potential is created by optical techniques such as,
spatial light modulation [6], holographic methods [7], phase
contrast methods [8], or by using photonic crystal cavities [9].
In any case, one can expect, at first sight, to find the parti-
cles trapped at the bottom of the prescribed potential well,
with a significant probability, provided that the incident field
is high enough to overcome the thermal energy. But in such
simple picture, one assumes a total decoupling between the
prescribed potential and the trapped objects. However, exper-
iments have shown that an intense field can induce forces be-
tween the trapped particles that modify noticeably their spa-
tial arrangement as well as the shape of the externally im-
posed potential [10, 11]. These additional forces are due to
the scattering and redistribution of the incident light by the
trapped objects. But at first sight, Mie or Rayleigh particles
(whose size is close to or smaller than the wavelength) scat-
ter light at a wide solid angle [12], what should lead to a
short range interaction between particles. When optical bind-
ing takes place, it is a collective response of the scatterers that
ensures coupling with a much longer range [13, 14]. In a situa-
tion with two counterpropagating (CP) beams, this can be ex-
plained by the refocalisation of the beams [10] by the trapped
particles. We transpose such idea at a larger scale, with parti-
cle radius, waist size, and inter-particle distance much greater
than the wavelength. Then, the diffraction losses can be kept
small and almost all the beam energy can be conserved along
the chain of trapped objects that would then behave as a wave-
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guide. In this case, the coupling between particles is expected
to be strong, so that a small displacement of one of them can
change the force felt by a particle very far from it. Then, one
can expect very interesting dynamical properties. Note that
breathing and collective oscillations have been observed ex-
perimentally and described theoretically for small particles
[10, 15]. Besides, stability and auto-organisation in the trans-
verse plane has been studied for two dimensional structures
[16].

In this article, we report on the theoretical study of the dy-
namics of a unidimensional chain of spherical droplets of flu-
ids (e.g. water in air), that interacts with two CP laser beams.
In the first section, we deal with the optical response of a
peridodic chain, and describes the optical modes that can be
guided in such system. In the second section, we present a
simple model used to describe the dynamics, that can handle
the collisions that lead to droplet coalescence. The results are
presented, that show droplet trapping. In particular, we pre-
dict a dynamically trapped state where all the particles un-
dergo collective breathing oscillations.

2 MODES OF AN OPTICAL CHAIN

In this section only, we neglect the optical forces, and study the
optical response of a chain of droplets to an incident beam. If
one considers spherical particles much greater than the wave-
length as well as a relatively small index contrast, one can :
(i) neglect the backreflection that would otherwise give rise to
Fabry Perot interferences between two droplets, (ii) use matrix
ray optics (model 1), or a Helmholtz equation (model 2) to de-
scribe how the field profile changes along the chain. We will
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FIG. 1 Scheme of the studied system, with two CP beams whose waists are distant of
L. The waist size of the beam propagating towards z > o (resp. z < 0) is denoted wo,

(resp. wo,,)- Note that only three droplets have been sketched for the sake of clarity.

present both model results, and show that they are in good
agreement provided that the beam waist on each droplet is
significantly smaller than the droplet radius.

Let us consider a uni-dimensional periodic chain made
of spherical droplets, of radius R, index of refraction 7,
plunged into an external medium of index #.y; — see Figure 1.
Optically, they behaves as an ensemble of ball lens of focal
length f = —(R/2) next/(Mext — Niye), so that the propagation
matrix over one period (of length d) is :

1-— d d
M = ( "lﬁxff nelxt )
Vi

This unitary matrix can be diagonalized, so that the operator
for N elementary patterns (propagation over a distance Nd)
reads :

A+0NP
0 A ’

where P depends on the object plane P, and image plane P;
between which one considers the propagation, and A. are the
eigenvalues of M, that can be written Ay = exp(+if). Then, a
simple calculation gives :

d
0= 1- . 1
arccos( o f) 1

Now, if a Gaussian mode, characterized by its complex radius
qo at the center of the first droplet (z=d) propagates over N pe-
riods, its shape (as described by matrix optics, denoted model
1) becomes gn = Mn.q0, what can be simply evaluated [17].

Msz‘l.(

Note that, by choosing specific injection condition, one can ex-
cite a “Bloch” mode, that will repeat with the period of the
chain [18]. This is valid for any value of 8, provided the inci-
dent field has a waist size wp and is focused at a distance zp
of the center of the first lens, with :

nzxtf)L
V ()

d/2,

wp =
Zp =
then, the waist will be refocused at a point equidistant from 2

neighboring droplets, leading to a periodic field profile similar
to the one of Figure 2(a)).

In the general case, when Egs. (2) are not satisfied, Bloch the-
orem tells us that the incident field excites a mode whose pe-
riod is greater than the one of the chain. One can consider that

after N droplets the complex radius of the beam has been de-
phased of K27, with K integer. By imposing 6 = 27tK/N, one
gets a condition on the ratio d/ f to observe such periodic fields
in the chain.

d
nextf

As f depends on the droplets radius, one can, by simply vary
the distance d, excite very different periodic responses in the
chain. Some examples are given in Figure 2, where the waist of
the Gaussian beam is plotted versus the position in the chain.

=2(1-cos(2tK/N)) 3)

This model where only Gaussian beams (TEMq) have been
considered has the advantage to give simple analytical formu-
lae. However, it is a priori not valid if the waist is comparable
to the dropet radius. Therefore, we developed a more accu-
rate, Huygens-Fresnel description of the wavefront evolution.
Then, the field at wavelength A in an object plane P, and its
image in plane P; are related by an Huygens integral, that can
be written in cylindrical coordinates [17]:

; e 2
¥(r) =2 )

kr2
oo -1 52 +AD(r,)
Xfo Yo(ro)e (2 )]O(ZHﬁro)rodro, 4)

where k is the wavenumber, z is the distance between the two
planes. If the object (resp. image) plane are just before (resp.
after) the droplet, A® (7o) = (it — 1ext)/ R% — 12 is the phase
acquired by a ray passing through the droplet at a distance 7,
from the axis.

Note that this expression takes into account the spherical aber-
rations and the diffraction that leads to a non-Gaussian pro-
file. Calculations have been carried out using Matlab, and
some routines from the OSCAR package [19]. The results are
shown in Figure 2, and are in very good agreement with the
matrix model, provided that the spot size on the droplet, w,
remains small enough (w ~ R/5 in Figure 2).

We have described the beam propagation in a periodic chain
of droplets. It comes out that the period of the beam width
depends simply on the ratio d/f. Besides, for any value of d/f,
one can excite a mode whose periodicity is exactly the one of
the chain. This latter is called a Bloch mode, by analogy to the
formalism developed in the physics of periodic media (solid
state physics, photonics).

It is not difficult to imagine what would happen if one were to
send two intense CP laser beams on the chain. One could ar-
range so that the same mode profile with the same periodicity
is excited by both beams. Then, one can expect to have trap-
ping, with a zero total force exerted on each droplet. However,
not all the excited modes would give rise to stable trapping,
and some more detailed study is required.

3 DYNAMICS OF THE CHAIN

Let us now consider the influence of optical forces. Due to
the droplet radius, and the index gradient, optical forces can
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FIG. 2 Waist profile of the gaussian beam excited for several values of the ratio d/f (see Eq. (3)). The incident waist is wgy = R/s, with R = 50 um. The solid (resp. dahsed) line

corresponds to the ray matrix (resp. Huygens) model.
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FIG. 3 Stable equilibrium obtained from the fixed point analysis of the equation of
motion, for three droplets of 5o pm radius in CP beams. Both beams are separated by
L =2 mm. One beam waist is fixed, wg, = 8 pm and wy, is varied between 6.75 pm

and 10 um (see Figure 1). Both beam power is P=1 W.

be safely computed from ray optics, under the hypothesis of
Gaussian beams [20], if the shape remain spherical at all times.

However, one knows that an intense light beam can distort the
droplet and thereby introduce large spherical aberrations. Re-
cent works on droplet deformation by gaussian beam can help
to evaluate the laser intensity at which this phenomenon oc-
curs [22]. It comes out that the corrections to spherical shape

due to the interaction with a beam of power P, whose waist
w, is smaller than the droplet radius R scale as (R/w,)*(P/C),
where ( is the surface tension. In our case, we could expect
some small deformation for a power of 1W in a spot radius of
wo ~ 10um impinging on a 50 um radius water droplet, and
observe a slight change of the focal length and in the spheri-
cal aberrations. However, for the sake of simplicity, we have
not considered this effect in the model. Yet, a more precise
Huygens-Fresnel description of the beam propagation could
be use to compute the forces on a non-spherical surface. In
this case one could still use [20] to compute the optical force,
but with the correct weight for the intensity of each ray [21].

The equations of motion of each droplets are :

dzi _ i
5 - v;(t),
% - % [Fopt (zi) = y0i(t)], ©)

where z;, v; and Fyp;(z;) are respectively the position, velocity
and the longitudinal optical force on the i droplet of mass
m. Note that Fyp;(z;) is a very complex function of the posi-
tion of all the other droplets, computed from [20]. As we are
working at low Reynolds number, the friction coefficient can
be expressed [21] as 7y = 67t R, where 7 is the dynamic viscos-
ity of the external medium. All the presented result hereafter
correspond to water droplets in air. Then, 7 = 1.8 x 10_5Pa.s,
iy = 1.33.

First, one searches for equilibrium positions. Therefore, we
impose the waist size and position of both beams, and search
for the z; that satisfy Fopi(z;) = 0. Then, the stable states
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(a) Three droplets chain. wo, = 5 um, wp, =4 pum, L = 1 mm. (see Figure 1)
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(c) Five droplets chain. wo, = wo, = 10 um. L = 4 mm. (see Figure 1)

FIG. 4 Time evolution of the chain towards a stable equilibrium. Example of chains of 3, 4 and 5 droplets with R = 50 um and A = 514.5 nm. Beam power is P = 1 W. In (b) and

(©), the injection conditions are symmetric and the structure is symmetric by respect to z = L/2.In (a) both beams do not have the same waist and the situation is asymmetric.

are found by searching for the eigenvalues of the jacobian of
Eq. (5), at the equilibrium positions, that have a negative real
part [23]. Figure 3 shows the stable equilibrium positions that
we obtained for a short chain, as a function of one incident
beam waist (the other being fixed at 8 um). In general the in-
tensity of both 1W-power laser beams incident on the droplets
is not identical. Nevertheless, the structure can reach a sta-
ble and does not move. In the particular case of symmetric

injection conditions (when both beams have the same waist,
wo, = wo, =8 pum), the structure auto-organises exactly in the
middle of the space between the two lasers. The droplet in the
middle of the chain is stable at z = L/2. In a more general case
(asymmetric injection conditions), we noticed that the stable
chains are not perfectly periodic.

In order to check that the solutions we obtained indeed cor-
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FIG. 5 Time evolution of the chain when coalescence phenomena occurs. R = 50 um,
A = 514.5 nm and L = 4.5 mm. The initial chain is periodic and a Bloch mode is

excited by symmetric injection condition, see. Eq. (2).

respond to trapped states, we made time simulation, start-
ing from different initial conditions. Then, we observed that
the droplets can experience collisions. In order to model what
would happen if two or more droplet collide and then coa-
lesce, we developed the following algorithm :

1. One evaluates the mode profile at each droplet position (ei-
ther from a matrix ray theory or a Huygens integral).

2. Then one computes F,;(z;) using [20].

3. Eq. (5) is integrated on a time step At.

4. The process is iterated untill a collision occurs or the simu-
lation is finished.

5.1f a collision occurs (between two droplets), one is removed,
the radius of the other one is increased, so that the total vol-
ume is conserved. Then the dynamics is iterated.

This “molecular dynamics” algorithm has been implemented
with Matlab, and after some time, the system generally
reaches a steady state, whether collisions occurs or not.
Figure 4 shows a typical evolution for short chains. One can
see that, varying the injection parameters (the waist size), one
can obtain stable trapping after some relaxation oscillation.
Note that the time needed to reach the equilibrium depends
on the optical force, and is typically of several minutes with
an optical power of P=1W. In the case where friction is strong
enough so that one can neglect inertia [21], this convergence
time scales as T ~ 1/P.

If one increases the number of droplets initially present, some
of them will be pushed towards one another, and will coa-
lesce. When a collision occurs, the force profile is modified and
affects all the other droplets. Eventually, the chain can reach a
stable trapped states, but with less droplets than what initially
present. Figure 5 shows an example where a 10 droplet system
evolves to a 3 droplet one, that is stable in the trap.

This is an example of optically controlled coalescence and
trapping with micro droplets that could be observable experi-
mentally.

o
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(a) Three droplets oscillating. woe =5 pm, wog =6 um, L =1
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»
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(b) wog =5 pm, wyg =8 pm, L = 1 mm

FIG. 6 Time evolution of a three droplets chain when a breathing state is excited.

R =50 um and A = 514.5 nm. The beam power is P = 1 W.

For some beam parameters, one observes that no stable fixed
point can be reached. However, the droplets trajectories can
remain bounded, and the droplets position start to oscillate,
see Figure 6. Again, we noticed that the oscillation frequency
(in the limit of strong friction) scales linearly with the light
power. The fact that a fixed trapped state can destabilize upon
changing a parameter (here, the incident beam waists), to be-
come a state of collective oscillation is typical from strongly
coupled system, and has been observed elsewhere in the trap-
ping of cold atoms [24]. In opto-fluidics, such oscillations have
been obtained with small particles in the transverse plane [16],
or in longitudinal binding [15]. But in our work the particles
are much larger than the wavelength and their motion modu-
late the gaussian beam profile in a very simple way. Indeed,
we observe a periodic breathing of its waist between each
droplet.

4 CONCLUSION

We have studied the dynamics of an optical chain for which
most of the incident energy is not diffracted away or absorbed,
but guided. The strong coupling which is therefore created be-
tween the droplets leads to an interesting dynamics. We ob-
served some ‘standard’ trapped state, where all the droplets
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relax to some fixed position, but also droplet coalescence be-
fore trapping. In some cases, the fixed point is unstable, and
the system converges to a dynamical trapped state, where
all the droplets oscillate periodically in position and velocity.
Such dynamics has been observed with solid particles in the
Mie regime [16], but not to our knowledge with large droplets
that may coalesce. The perspective are mainly theoretical, and
are related to the very general problem of spontaneous sym-
metry breaking and auto-organisation in complex systems.
Yet, we have shown that one can control the beam profile
through the positions of the droplets. This could be used to
make a switch in order to control the beam propagation in the
chain. It should be also possible to filter out some modes of a
multimode incident beam, using an optofluidic system made
of a few droplets actuated by light or by external voltage [25].
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