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C. Olvera-Olvera Unidad Académica de Ingenierı́a Eléctrica, Universidad Autónoma de Zacatecas, Antiguo Camino a la
Bufa No. 1, Col. Centro. C. P. 98000, Zacatecas, Zac., México
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The present work introduces an alternative method to deal with digital image restoration into a Bayesian framework, particularly, the use
of a new half-quadratic function is proposed which performance is satisfactory compared with respect to some other functions in existing
literature. The bayesian methodology is based on the prior knowledge of some information that allows an efficient modelling of the image
acquisition process. The edge preservation of objects into the image while smoothing noise is necessary in an adequate model. Thus, we
use a convexity criteria given by a semi-Huber function to obtain adequate weighting of the cost functions (half-quadratic) to be minimized.
The principal objective when using Bayesian methods based on the Markov Random Fields (MRF) in the context of image processing is to
eliminate those effects caused by the excessive smoothness on the reconstruction process of image which are rich in contours or edges. A
comparison between the new introduced scheme and other three existing schemes, for the cases of noise filtering and image deblurring,
is presented. This collection of implemented methods is inspired of course on the use of MRFs such as the semi-Huber, the generalized
Gaussian, the Welch, and Tukey potential functions with granularity control. The obtained results showed a satisfactory performance and
the effectiveness of the proposed estimator with respect to other three estimators.
[DOI: http://dx.doi.org/10.2971/jeos.2013.13072]
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1 INTRODUCTION

The use of powerful methods proposed in the seventies under
the name of Bayesian estimation [1]–[3], are nowadays essen-
tial at least in the cases of image filtering, segmentation and
restoration (e.g. image deblurring) [4]. The basic idea of these
methods is to construct a Maximum a posteriori (MAP) esti-
mate of the modes or so called estimator of true images by us-
ing Markov Random Fields (MRF) in a Bayesian framework.
The idea is based on a robust scheme which could be adapted
to reject outliers, tackling situations where noise is present in
different forms during the acquisition process [5]–[12]. Some
image analysis and processing tasks involve the filtering or
image recovery x̂ (restoration) after it passes by a degrada-
tion process giving the observed image y (see Eqs. (1) and (3)).
Such degradation covers the noise perturbation, blurring ef-
fects due to focus of the adquisition systems lenses or to the

bandwidth capacity, and other artifacts that may be added to
the correct data. The image restoration or recuperation ap-
proaches of an image to its original condition given a de-
graded image, pass by reverting the effects caused by a dis-
tortion function. In fact, the degradation characteristics given
by F(x) and n in Eq. (1) are crucial information and they must
be known or estimated during the inversion procedure. Typi-
cally, F(x) is related to a point spread function H which can be
linked with the probability distribution of the noise contami-
nation n. In the case of MAP filters, usually the additive Gaus-
sian noise is considered. A global image formulation model
could be:

y = F(x) + n, (1)

where, F(x) is a functional that could take for instance, two
forms: F(x) = x and F(x) = Hx, being H a linear opera-
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tor which models the image degradation. All variables pre-
sented along the text are, x = (xs)s∈S, where S is a set of pix-
els: which represents a realization of a Markov random field
X (or image to be estimated), y: represents the observed im-
age with additive noise n and/or distorted by H, and x̂: is the
estimator of x with respect to data y. There is another source
of information which imposes a key rule in the image pro-
cessing context, this is the spatial information that represents
the likelihood or correlation between the intensity values of
a neighborhood of pixels well specified. The modellig, when
using MRF, takes into account such spatial interaction and it
was introduced and formalized by Besag [1], where the pow-
erfulness of these statistical tools is shown (as well as in pio-
neering works [2, 3, 13, 14]). Combining both kinds of infor-
mation in an statistical framework, the restoration is led by
an estimation procedure given the maximum a posteriori of
the true images when the distortion functionals are known.
The algorithms implemented in this work were developed
considering a degraded signal, where the resulting non-linear
recursive filters show excellent characteristics to preserve all
the details contained in the image, and on the other hand,
they smooth the noise components. Particularly four estima-
tion schemes are implemented using, the semi-Huber poten-
tial function which is proposed as an extension of some previ-
ous works [15, 16] (see in Section 3), and the generalized MRF
introduced in the work of Bouman [13], the Welch and Tukey
potential functions as used in the works of Rivera [17]–[19]
(see in Section 4).

Section 2 describes the general definition of MAP estima-
tor, gives an introduction to MRFs and describes briefly al-
ternative similar tools called Hidden Markov Fields (HMF).
The potential functions compared in this paper must be ob-
tained or proposed to conduct adequately the inversion pro-
cess. Such functions are described in Section 3 and 4 where the
convexity is the key to formulate an adequate criterion to be
minimized. In Sections 5 and 6, the MAP estimators resulting
from different MRF structures and some illustrative results are
briefly discussed. Finally, in Section 7 some partial conclusions
and comments are given.

2 MAP estimation, MRFs and Hidden
Markov Fields (HMF)

The problem of image estimation (e.g. filtering or restoration)
into a Bayesian framework deals with the solution of an in-
verse problem, where the estimation process is carried out in
a whole stochastic environment. The most popular estimators
used nowadays are:

Maximum Likelihood (ML) estimator:

x̂ML = arg max
x∈X

p(y|x), (2)

where p(·) is the probability function of y given x. This esti-
mator is a classical approach in estimation theory, but under
certain circumstances, in image processing restoration, it re-
sults in an ill-posed problem or produces excessive noise and
also causes smooth of edges. The regularization of the ML es-
timator leads to a Bayesian approach, where it is important to

exploit all known information or so called prior information
about any process under study, which gives a better statistical
estimator called

Maximum A Posteriori (MAP) estimator:

x̂MAP = arg max
x∈X

p(x|y)
= arg max

x∈X
(log p(y|x) + log g(x)) ,

(3)

in this case, the estimator is regularized by using a Markov
random field function g(x) which models all prior informa-
tion as a whole probability distribution, where X is the set
of possible values of x capable to maximize the posterior law
p(x|y), and p(y|x) is the likelihood probability function from
y given x.

The Markov random fields (MRF) can be represented in a gen-
eral way by using the following equation:

g(x) =
1
Z

exp

(
− ∑

c∈C
Vc(xc)

)
, (4)

where Z is a normalization constant, C is a set of “cliques” c,
and Vc(xc) is a potential function given over the local group
of points c. Generally, the “cliques” correspond to the sets of
neighborhoods of pixels if ∀k, r ∈ c, k and r are neighbors, and
one can construct a neighborhood system called ∂k; for the 8
closest neighbors ∂k = {r : |k − r| < 2}. A theorem intro-
duced by Hammersley-Clifford [1, 3] probes the equivalence
between the Gibbs distribution and the MRFs. The Markov
random fields have the capacity to represent various image
sources.

There is a variety of cost functions also known as potential
functions that can be used into the MRF [13], [17]–[19]. Each
potential function characterizes the interactions between pix-
els in the same local group. As an example, the following fam-
ily represents convex functions:

ρ(∆) = |∆|p (5)

where ∆ = λ[xk − xr], λ is a constant parameter to be chosen,
and p takes constant values such as p ≥ 1 accordingly to the
theorem 2 in [13].

On the other hand, if one considers an equivalent problem
of segmentation, the reconstruction modeling problem can be
seen as Hidden Markov Fields (HMF), in this case x = (xs)s∈S
and y = (ys)s∈S are considered as a pairwise Markov ran-
dom fields where x is a realization of a hidden field X given
the realization y of the observed field Y [20]. The statistical
assumptions and theoretic framework are more general and
well developed. The Markovianity of X is not necessary, but
the Markovianity of X conditionally to Y must be assured. In
the classical assumptions of Markovianity for the hidden X,
the law holds according to Eq. (4). However, for the pairwise
Markovianity (X, Y) a more general model law is given by

g(x, y) =
1
Z

exp

(
− ∑

c∈C
Vc(xc, yc)

)
, (6)

in this case the Markov fields (X, Y) are coupled assuming
that the posterior law p(x|y) is Markovian. In recent works,
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these coupled Markov random fields have been extended in
at least two directions:

1) Conditional Markov Fields (CMF) where it is directly as-
sumed the Markovianity of p(x|y), even if the pairwise
(X, Y) is not Markovian [21]–[23],

2) Triplet Markov Fields (TMF), here a third finite field
u = (us)s∈S is introduced assuming that the triplet field
(X, U, Y) is Markovian [24]–[26]. It is possible to estimate
x from y as shown for image segmentation tasks [24, 27].

These extensions of HMF are promising for segmentation, and
could also be an alternative for the equivalent problems of im-
age filtering and restoration.

3 Semi-Huber (SH) proposed
potential function

The principal apport of this work is the proposition of the
semi-Huber potential function for image restoration, which
performance is comparable with respect to half-quadratic
functional performance. In order to assure completely the ro-
bustness into the edge preserving image filtering, diminishing
at the same time the convergence speed, the Huber–like norm
or semi–Huber (SH) potential function is proposed as a half-
quadratic (HQ) function. Such functional has been used in one
dimensional robust estimation as described in [15] for the case
of non-linear regression. This function is adjusted in this work
in two dimensions according to the following equation:

log g(x) = −λ

 ∑
{k,r}∈C

bkrρ1(x)

+ ct, (7)

where

ρ1(x) = ∆2
0

2

(√
1 + 4ϕ1(x)

∆2
0
− 1
)

,

and where ∆0 > 0 is a constant value, bkr is a constant that
depends on the distance between the r and k pixels, ct is a con-
stant term, and ϕ1(x) = e2 where e = (xk − xr). The potential
function ρ1(x) must fulfill the following conditions

ρ1(x) ≥ 0, ∀x with ρ1(0) = 0,

ψ(x) ≡ ∂ρ1(x)/∂x, exists,

ρ1(x) = ρ1(−x), is symmetric,

w(x) ≡ ψ(x)
2x

, exists,

lim
x→+∞

w(x) = µ, 0 ≤ µ < +∞,

lim
x→+0

w(x) = M, 0 < M < +∞. (8)

Figure 1(a) shows the behavior of the semi-Huber proposed
function for different ∆0 values, in the range of x ∈ [−8, 8].
Notice that there is not necessary a scale parameter and that
the potential function meets all requirements imposed by con-
ditions (8).

4 General ized Gaussian MRF and
other half-quadratic functions

In some works [28]–[32] a variety of new potential functions
were introduced, such proposed functions are semi-quadratic
functionals or half-quadratic and they characterize certain
convexity into the regularization term [33, 34] (e.g. extension
of penalization) which permits to build efficient and robust
estimators in the sense of data preservation which is linked to
the original or source image. Also, the necessary time of com-
putation decreases with respect to other proposed schemes as
shown by M. Nikolova [6]–[11], [35] and Labat [36, 37]. On the
other hand, a way to obtain the posterior distribution of im-
ages has been proposed in previous works from A. Gibbs [38],
in this case, it is necessary to use sophisticated stochastic sim-
ulation techniques based on the Markov Chain Monte Carlo
(MCMC) methods [39, 40]. If it is possible to obtain the poste-
rior distribution of any image, then, it is also possible to sam-
ple from such posterior distribution and obtain the MAP esti-
mator, or other estimators such as the median estimator. The
MAP and the median estimators search the principal mode of
the posterior distribution.

In the present paper some potential functions are compared.
The proposed semi-Huber is compared with respect to the
generalized Gaussian MRF introduced in [13, 14], the Welch,
and Tukey potential functions with granularity control. These
two last functions were proposed and used in the works of
Rivera [17]–[19] providing excellent performance.

4.1 General ized Gaussian MRF (GGMRF)

If one considers to generalize the Gaussian MRF (when
p = q = 2 one has a GMRF, see Eq. (18)) as proposed in [13],
then the generalized potential functions can be limited such
as

ρ2(∆) = |∆|p , for 1 ≤ p ≤ 2 (9)

obtaining the GGMRF

log g(x) = −λp

∑
k∈S

akxp
k + ∑

{k,r}∈C
bkr|xk − xr|p

+ ct, (10)

where theoretically ak > 0 and bkr > 0, k is the site or pixel of
interest and S is the set of sites into the whole MRF, and r cor-
responds to the local neighbors. In practice it is recommended
to take ak = 0 thus, the unicity of x̂MAP, can be assured given
that the likelihood term is quadratic q = 2, then

log g(x) = −λp

 ∑
{k,r}∈C

bkr|xk − xr|p
+ ct, (11)

and from Eq. (3), log p(y|x) is strictly convex and so x̂MAP is
continuous in y, and in p. The choice of the power p is capital,
since it constrains the convergence speed of the local or global
estimator, and the quality of the restored image. Small val-
ues for p allows abrupt discontinuities modeling while large
values smooth them. Figure 1(b) shows the behavior of the
generalized Gaussian function for different p threshold val-
ues, in the range of x ∈ [−8, 8]. The proposition of such func-
tion avoids the use of a scale parameter and at the same time
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FIG. 1 The four convex potential functions used: (a) The Semi-Huber potential function for ∆0 with different values; (b) The Generalized Gaussian potential function for p different

values, while q = 2; (c) The granularity control Welch potential function for kg different values, while µ = 0.01; (d) The granularity control Tukey potential function for kg different

values, while µ = 0.01.

the potential function meets all requirements imposed by con-
ditions (8).

4.2 Welch potential function

Known as a hard redescender potential function with granu-
larity control given by µ, and proposed in [17]

log g(x)

=− λ

µ ∑
{k,r}∈C

bkr ϕ1(x) + (1− µ) ∑
{k,r}∈C

bkrρ3(x)


+ ct, (12)

where k is a positive scale parameter and

ρ3(x) = 1− 1
2kg

exp(−kg ϕ1(x))

This function is also half-quadratic such as the Tukey func-
tion presented in the following subsection. Figure 1(c) shows
the behavior of the Welch function with granularity control
for different kg threshold values, in the range of x ∈ [−8, 8],
µ = 0.01. Also, this potential function fulfills all requirements
imposed by conditions (8).

4.3 Tukey potential function

This is another hard redescender potential function, proposed
in [17] that fulfills all requirements imposed by conditions (8)

log g(x)

=− λ

µ ∑
{k,r}∈C

bkr ϕ1(x) + (1− µ) ∑
{k,r}∈C

bkrρ4(x)


+ ct, (13)
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where

ρ4(x) =
{

1− (1− (2e/kg)2)3, for |e/kg| < 1/2,
1, otherwise.

and where kg is also a scale parameter. On the other hand,
ϕ1(x) can be the quadratic function which together with µ in-
duces the granularity control. Figure 1(d) shows the behavior
of the Tukey function with granularity control for different kg
values, in the range of x ∈ [−8, 8], µ = 0.01.

5 MAP estimators and practical
convergence

5.1 Image fi l ter ing

In this section some estimators are deduced, the single prob-
lem of filtering noise to restore an observed signal y leads to
establish the estimators. The observation equation could be

y = x + n, where n ∼ N (0, Iσ2
n)

where I is the identity matrix, and the general MAP estimator
for this case is deduced from the next minimization process

x̂MAP1 = arg min
x∈X

(− log p(y|x)− log g(x)) . (14)

Thus, the MAP estimators for this particular problem under
hypothesis of centered Gaussian noise with variance σ2

n are
given using the four previous potential functions. The first
MAP estimator can be obtained when using our proposed
semi-Huber (SH) MRF function. The global estimator can be
described by the equation

x̂MAP1

= arg min
x∈X

∑
k∈S
|yk − xk|2 + λ

 ∑
{k,r}∈C

bk−rρ1(x)

 ,

(15)

and, the local estimator leads to the following expression for
the first local MAP estimator

x̂1 = arg min
x∈X

{
|yk − xk|2 + λ

(
∑

r∈∂k
bk−rρ1(x)

)}
. (16)

On the other hand, the minimization problem leads to con-
sider various methods [6, 9]–[11, 35, 41]:

• global iterative techniques such as: the descendent gradi-
ent [35], conjugate gradient [17] (for recent propositions
one can consult the work of Labat [36, 37]), Gauss-Seidel,
Over-relaxed methods, etc.

• local minimization techniques: minimization at each
pixel xk (which generally needs more time, but from our
point of view are more precise), where also some of the
above methods can be used.

In this work the local techniques were used (the expecta-
tion maximization (EM) could also be implemented, or the
complete half-quadratic scheme as proposed by Geman and
Reinolds [33], and Geman and Yang [34]), since all hyper-
parameters included into the potential functions were chosen
heuristically or according to values proposed in references.
Only, the step of minimization with respect to x was imple-
mented to probe convergence of estimators. The second MAP
estimator can be obtained when using the GGMRF function.
Its global estimator is described by the following equation

x̂MAP2

= arg min
x∈X

∑
k∈S
|yk − xk|q + σqλp ∑

{k,r}∈C
bk−r|xk − xr|p

 ,

(17)

where bkr = bk−r = br−k assuming homogeneity of the MRFs.
In this case, the local MAP estimator for the GGMRF is given
by

x̂2 = arg min
x∈X

{
|yk − xk|q + σqλp ∑

r∈∂k
|xk − xr|p

}
, (18)

where, according to the value of parameters p and q, the per-
formance of such estimator varies. For example, if p = q = 2,
one has the Gaussian condition of the potential function
where the obtained estimator is similar to the least-squares
one (L2 norm) since the likelihood function is quadratic, with
an additional quadratic term of penalization which degrades
(e.g. large smoothing) the estimated image

x̂k =
yk + (σλ)2 ∑r∈∂k br−kxr

1 + (σλ)2 ∑r∈∂k br−k
. (19)

On the other hand, in the case of p = q = 1, the criterion is
absolute (L1 norm), and the estimator converges to the median
estimator, which in practice, it is difficult to implement in a
precise way

x̂k = median (yk, xr1 , . . . , xrI ) . (20)

This criterion is not differentiable at zero and this fact causes
instability in the minimization procedure. For intermediate
values of p and q the estimators become sub-optimal, and the
iterated methods can be used to minimize the obtained cri-
terions. Some iterative methods are the sub–gradient, or the
Levenberg–Marquardt method of MATLAB 7, the last was
used in this work. For cases where q 6= p, for example q = 2
and 1 < p < 2, some studies and different prior functions
have been proposed in [7]–[11, 35], particularly in [7]–[11]
where non-convex regularized least-squares schemes are de-
duced and its convergence is analyzed (where 0 < p < 1) with
very good times of convergences as presented in [42]. The lo-
cal or global condition of the estimator depends thus on:

1) if one has values of 1 < p < 2: the estimator x̂min.loc →
x̂min.glob, which means that a local minimum would coin-
cide with a global minimum,
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2) moreover, if p 6= q, the criterion is not homogeneous, but:
x̂(αy, λ) = αx̂(y, α1−q/pλ), assuring the convergence and
existence of the estimator which is continuous with re-
spect to p.

Moreover, since the noise is Gaussian, the value of q = 2 is
a good choice. However, if the noise is non-Gaussian, and
if the structure of noise is known, then the likelihood term
changes to give a particular estimator (such as that proposed
by Bertaux [5]) with some properties of robustness to the min-
imization procedure. If the structure of noise is assumed un-
known, still one could reconsider the use of the GGMRF with
values for q ∈ (1, 2], or consider also another type of potential
functions as those described in some works of Idier [28]–[31]
and Nikolova [9]–[11, 35].

The third MAP estimator is obtained when using the Welch
potential function with granularity control, that is,

x̂MAP3 = arg min
x∈X

{
∑
k∈S
|yk − xk|2 + λ

·

µ ∑
{k,r}∈C

bk−r ϕ1(x) + (1− µ) ∑
{k,r}∈C

bk−rρ3(x)

 , (21)

and its local version is

x̂3 = arg min
x∈X

{
|yk − xk|2 + λ

·
(

µ ∑
r∈∂k

bk−r ϕ1(x) + (1− µ) ∑
r∈∂k

bk−rρ3(x)

)}
. (22)

And finally, the fourth MAP estimator is deduced from the
Tukey potential function with granularity control, deriving
the following global estimator

x̂MAP4 = arg min
x∈X

{
∑
k∈S
|yk − xk|2 + λ

·

µ ∑
{k,r}∈C

bk−r ϕ1(x) + (1− µ) ∑
{k,r}∈C

bk−rρ4(x)

 , (23)

where the local estimator is given by

x̂4 = arg min
x∈X

{
|yk − xk|2 + λ

·
(

µ ∑
r∈∂k

bk−r ϕ1(x) + (1− µ) ∑
r∈∂k

bk−rρ4(x)

)}
. (24)

The use of a prior distribution function based on the loga-
rithm, with any degree of convexity and quasi-homogeneous,
permits to consider a variety of possible choices of potential
functions. Maybe, the most important challenges that must be
well solved are: the adequate selection of hyper-parameters
from potential functions, where different versions of the
EM algorithms try to tackle this problem [11, 28, 31, 32],
another is the minimization procedure which in any
sense will regulate the convergence speed as proposed
in [9, 10, 17, 33, 34, 36, 37, 41].

5.2 Image deconvolution

On the other hand, for the problem of image deblurring to
restore an observed signal y, the observation equation used is
given by

y = Hx + n, with n ∼ N (0, Iσ2
n) (25)

for the four MAP estimators the likelihood term changes, such
that,

x̂MAPm = arg min
x∈X

{
∑
S
|y− Hx|2 − log g(x)

}
, (26)

where the matrix H is known and given by the following trun-
cated Gaussian blurring function,

h(i, j) = exp

(
−i2 − j2

2σ2
b

)
, for − 3 ≤ i, j ≤ 3, (27)

as used also in [42], with σb = 1.5, and m = 1, 2, 3, 4 according
to the four SH, GGMRF, Welsh and Tukey potential functions.
Here, the results were improved combining ideas introduced
in a similar Bayesian way by Levin [43] adding a Sparse prior
(SP) for filtering and then reconstructing the image.

6 Some experiments

Results presented in this section were concerned experiment-
ing extensively with five images: synthetic, Lena, Camera-
man, Boat and fringe pattern, to probe the performance of the
presented estimators.

6.1 Image fi l ter ing

Continuing with the problem of filtering noise, some estima-
tion results are presented when images are contaminated by
Gaussian noise, and there are not other type of distortions.
The first experiment was made considering σn = 5, 10, 15. In
the work by De la Rosa [16] some results were previously pre-
sented based on the analysis of a synthetic image and the stan-
dard image of “Lena”, different levels of noise were added to
the images: n ∼ N (0, Iσ2

n), the values of σn are given such
that the obtained degradation is perceptible and difficult to
eliminate. The results were compared using different values
for ∆0 and λ = 1 (MAP1), different values for p and λ pre-
serving q = 2 (MAP2), and different values for k, µ and λ

(MAP3 and MAP4). Generally, with the four estimators the
filtering task gives good visual results (see Figures 2, 3, 4 and
5), but the time of computation is different between them. The
faster estimator is the MAP3, while the slowest is the MAP2
with p = 1.2 which results correspond to the Cameraman in
Figure 5(d). In the case of the Welsh and Tukey functionals
the tuning problems must be solved implementing in correct
ways more sophisticated algorithms based, for example, on
the expectation maximization method. Figure 6 shows a syn-
thetic generated fringe image, which was used to probe per-
formance of estimators. In this case, it is known how the noise
structure that contaminates data is, but the signal-to-noise is
unknown.

Once again the obtained results coincide with the previous
results for other images, but with an increase of computa-
tion time, which has a relation with the image dimensions (as
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FIG. 2 a) Image with noise, σn = 6 (35 × 35), b) MAP2 estimation with p = 1.2 and

q = 2 (8 s), c) MAP2 estimation with p = 1.1 and q = 2 (13 s), d) MAP1 estimation (6 s),

e) MAP3 estimation (5 s) and f) MAP4 estimation (4 s).

Lena Original

(a)

Lena, Gaussian noise σ = 15

(b)

MRF SH estimation, 29.1 dB

(c)

MRF GG estimation, 29 dB

(d)

MRF Welsh estimation, 28.5 dB

(e)

MRF Tukey estimation, 28.6 dB

(f)

FIG. 4 Results for Lena standard image: (a) describes the original image; (b) describes

the noisy image using Gaussian noise with σ = 15; (c) filtered image using MAP1

(∆0 = 20); (d) filtered image using MAP2 (λ = 30, p = 1.2); (e) filtered image using

MAP3 (kg = 2000, µ = 0.025, λ = 30); (f) filtered image using MAP4 (kg = 2000, µ = 0.025,

λ = 30).
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3−D Restored image 1
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3−D Restored image 3

0
20

40

0

20

40
−200

0

200

400

3−D Restored image 4

0
20

40

0

20

40
−200

0

200

400
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FIG. 3 a) Image with noise, σn = 6 (35 × 35) 3-D view, b) MAP2 estimation with p = 1.2

and q = 2, c) MAP2 estimation with p = 1.1 and q = 2, d) MAP1 estimation, e) MAP3

estimation and f) MAP4 estimation.

Cameraman Original

(a)

Cameraman, Gaussian noise σ = 15

(b)

MRF SH estimation, 28.9 dB

(c)

MRF GG estimation, 28.8 dB

(d)

MRF Welsh estimation, 27.4 dB

(e)

MRF Tukey estimation, 27.3 dB

(f)

FIG. 5 Results for Cameraman standard image: (a) describes the original image; (b)

describes the noisy image using Gaussian noise with σ = 15; (c) filtered image using

MAP1 (∆0 = 20); (d) filtered image using MAP2 (λ = 30, p = 1.2); (e) filtered image

using MAP3 (kg = 2000, µ = 0.025, λ = 30); (f) filtered image using MAP4 (kg = 2000,

µ = 0.025, λ = 30).
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FIG. 6 Image with Gaussian noise with unknown σ (200 × 200), b) MAP2 estimation,

p = 1.5 (100 s), c) MAP2 estimation p = 1.2 (120 s), d) MAP1 estimation (52 s), e) MAP3

estimation (50 s) and f) MAP4 estimation (52 s).

shown in Table 1). Some interesting applications of robust esti-
mation are particulary focused on phase recovery from fringe
patterns as presented in work [44], phase unwrapping, and
some other problems in optical instrumentation. In this sense
some filtering results were thus obtained using the presented
MAP estimators.

Finally, Table 1 shows the performance of the four MAP es-
timators for the problem of filtering Gaussian noise, where
an objective evaluation is conducted accordingly to the peak
signal to noise ratio (PSNR). Also the computation times in
MATLAB are shown in Table 1. Such comparative evaluation
shows that our proposed approach MAP1, gives better or sim-
ilar performance with respect to MAP2, MAP3, and MAP4. On
the other hand, the use of half-quadratic potential functions
permits flexibility on the computation times [7, 8, 11], but still
it is a challenge to tune correctly the hyper-parameters to ob-
tain a better performance in the sense of restoration. Perhaps
the most simple potential function to tune is the semi-Huber
(MAP1). Also making the correct hypothesis over the noise
could help to improve the performance of the estimator. This
could be directly reflected by proposing a more adapted like-
lihood function, as proposed by Bertaux [5] and some other
recent works [9] (in cases of non-Gaussian noise), where a con-
nection with variational and partial differential equations is il-
lustrated evoking the famous work of Perona and Malik [45],
and some recent related works.

6.2 Image deconvolution

Now, for the problem of image deconvolution some estima-
tion results are presented when images are contaminated by
Gaussian noise, and Gaussian distortion (with σb = 1.5) Blur-

Cameraman Original

(a)

Observed image, Gaussian distortion + Gaussian noise

(b)

MRF SH restored

(c)

MRF GG restored

(d)

MRF Welsh restored

(e)

MRF Tukey restored

(f)

FIG. 7 Results for Cameraman standard image: (a) describes the original image; (b)

describes the distorted image using Gaussian noise with σ = 3; (c) restored image

using MAP1 (∆0 = 20); (d) restored image using MAP2 (λ = 30, p = 1.2); (e) restored

image using MAP3 (kg = 2000, µ = 0.0015, λ = 10); (f) restored image using MAP4

(kg = 2000, µ = 0.0015, λ = 10).

ring the image. This second experiment was made consider-
ing thus σn = 3, 5, 7. The results were compared using differ-
ent values for ∆0 and with λ = 1 (MAP1), different values
for p and λ preserving q = 2 (MAP2), and different values
for k, µ and λ (MAP3 and MAP4). Figures 7 and 9 show a
comparison of results obtained for the Cameraman and Boat
images accordingly to the four MAP estimators. One can no-
tice that preserving values of hyper-parameters near those
used for the filtering case, the estimators smooth the noise
but does not made good deblurring or recuperation of the
image (the PSNR for this case is depicted in Table 2). One
must change the hyper-parameters values searching a trade
of between the granularity of the noise and the sharpness of
the image to make a good deblurring task (decompositing in
two steps the image reconstruction). Figure 8 and 10 show the
obtained results on the Cameraman and Boat images using
a combination of proposed estimators together with a Sparse
prior (SP) deconvolution technique introduced in [43].The im-
provement in the restoration is visible; here the recuperation
was obtained in two steps; first the noise was smoothed and
then, the deblurring was obtained using SP deconvolution
technique (our approach can be used in both steps, tuning
the hyper-parameters two times). On the hands, in Table 2
the performance of the four MAP estimators and the SP de-
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� σ = 15 MAP1 MAP2 MAP3 MAP4

Synthetic PSNR 24.7 24.6 24.7 24.6
35× 35 PSNR filt. 28.8 27.6 25.5 25.6

Time (s) 5.9 7.6 4.6 5.2
Lena PSNR 24.5 24.5 24.6 24.6

120× 120 PSNR filt 29.1 28.9 26.0 27.5
Time (s) 75.3 80.6 59.9 59.1

Cameraman PSNR 24.6 24.7 24.6 24.6
256× 256 PSNR filt 28.9 28.8 27.3 27.4

Time (s) 341.7 355.9 243.8 243.6
Boat PSNR 24.6 24.6 24.6 24.6

512× 512 PSNR filt 29.4 29.5 27.3 28.8
Time (s) 1243.3 1545.5 1014.2 1051.4

TABLE 1 Results obtained in evaluating the filtering capacity of the different MAP estimators using four images.

Cameraman Original

(a)

Only FD restored

(b)

MRF SH restored, using also FD

(c)

MRF GG restored, using also FD

(d)

MRF Welsh restored, using also FD

(e)

MRF Tukey restored, using also FD

(f)

FIG. 8 Results for Cameraman standard image: (a) describes the original image; (b) de-

scribes restored image using only a frequency domain (FD) deconvolution technique;

(c) restored image using MAP2 and FD (∆0 = 20); (d) restored image using MAP1 and

FD (λ = 0.15, p = 1.2); (e) restored image using MAP3 and FD (kg = 2000, µ = 0.0015,

λ = 10); (f) restored image using MAP4 and FD (kg = 2000, µ = 0.0015, λ = 10).

convolution is shown, where an objective evaluation is made
accordingly to the PSNR and also computation times in MAT-
LAB are shown. Here also the approach MAP1, gives similar
performance with respect to MAP2, MAP3, and MAP4.

Original image

(a)

Observed image, Gaussian distortion + Gaussian noise

(b)

MRF SH restored

(c)

MRF GG restored

(d)

MRF Welsh restored

(e)

MRF Tukey restored

(f)

FIG. 9 Results for Boat standard image: (a) describes the original image; (b) describes

the distorted image using Gaussian noise with σ = 3; (c) restored image using MAP1

(∆0 = 20); (d) restored image using MAP2 (λ = 30, p = 1.2); (e) restored image using

MAP3 (kg = 2000, µ = 0.0015, λ = 10); (f) restored image using MAP4 (kg = 2000,

µ = 0.0015, λ = 10).

7 Conclusions and comments

The use of a prior distribution functions based on the loga-
rithm, with any degree of convexity and quasi-homogeneous,
permits to consider a variety of possible choices of potential
functions. Maybe, the most important challenges that must be
well solved are: the adequate selection of hyper-parameters
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� σn = 3 MAP1 MAP2 MAP3 MAP4

Lena PSNR 17.4 17.4 17.4 17.4
120× 120 PSNR restored 17.5 17.6 17.4 17.3

PSNR restored FD 20.8 20.8 20.8 20.4
Time (s) 58.9 91.3 58.8 59.2

Cameraman PSNR 19.3 19.3 19.3 19.3
256× 256 PSNR restored 19.4 19.4 19.4 19.3

PSNR restored FD 22.5 22.3 22.5 22.2
Time (s) 257.7 408.0 256.8 256.9

Boat PSNR 20.4 20.4 20.4 20.4
512× 512 PSNR restored 20.5 20.5 20.4 20.4

PSNR restored FD 25.6 25.8 26.0 25.9
Time (s) 1014.9 1606.5 1011.8 1017.5

TABLE 2 Results obtained in evaluating the deconvolution capacity of the different MAP estimators.

Original image

(a)

Only FD restored

(b)

MRF SH restored, using also FD

(c)

MRF GG restored, using also FD

(d)

MRF Welsh restored, using also FD

(e)

MRF Tukey restored, using also FD

(f)

FIG. 10 Results for Boat standard image: (a) describes the original image; (b) describes

restored image using only a Sparse prior (SP) deconvolution technique; (c) restored

image using MAP1 and SP (∆0 = 20); (d) restored image using MAP2 and SP (λ = 0.15,

p = 1.2); (e) restored image using MAP3 and SP (kg = 2000, µ = 0.0015, λ = 10); (f)

restored image using MAP4 and SP (kg = 2000, µ = 0.0015, λ = 10).

from potential functions, where different versions of the EM
algorithms try to tackle this problem, another is the mini-
mization procedure which in any sense will regulate the con-
vergence speed as proposed by Allain [41], German [33, 34],
Rivera [17], Labat [36, 37], Nikolova [9, 10, 35].

In the case of the semi-Huber potential function (MAP1), the
tuning is less complicated and of course, the estimator manip-
ulation is far simpler than Welsh (MAP3) and Tukey (MAP4).
On the other hand, this problem can be solved as argued by
Idier [28] and Rivera [17] by implementing more sophisticated
algorithms with the compromise to reduce time of compu-
tation and better quality in restoration as recently exposed
by Ruimin Pan [12, 28, 42]. Some advantages on the use of
GGMRF as prior information into the Bayesian estimation
(MAP2) are: the continuity of the estimator is assured as a
function of the data values when 1 < p ≤ 2 even for Gaus-
sian and non-Gaussian noise asumption. The edge preserv-
ing is also assured, over all when p → 1 and obviously it
depends on the choice between the interval 1 < p < 2. The
final objective of this work has been to contribute with a se-
ries of software tools for image analysis focused for instance
to optical instrumentation tasks such as those treated in the
works [44] and [18, 19] obtaining competitive results in filter-
ing and reconstruction. More over, the extensions of HMF will
be considered in future work as an alternative for solving the
problems of image filtering and restoration.
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