
J. Europ. Opt. Soc. Rap. Public. 8, 13042 (2013) www.jeos.org

Radiative properties of carriers in CdSe-CdS core-shell
heterostructured nanocrystals of various geometries
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We report a model on core-shell heterostructured nanocrystals with CdSe as the core and CdS as the shell. The model is based on one-band
Schrödinger equation. Three different geometries, nanodot, nanorod, and nanobone, are implemented. The carrier localization regimes with
these structures are simulated, compared, and analyzed. Based on the electron and hole wave functions, the carrier overlap integral that
has a great impact on stimulated emission is further investigated numerically by a novel approach. Furthermore, the relation between the
nanocrystal size and electron-hole recombination energy is also examined.
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1 INTRODUCTION

Colloidal semiconductor nanocrystals (NCs), or quantum dots
(QDs), have continually been an active research area which
introduces a variety of applications involving photonic de-
vices, telecommunication, information storage, medical in-
struments, etc [1, 2]. Among the various formations of semi-
conductor NCs, core-shell heterostructured NCs earn special
attention due to the feature that the carrier distribution wave
function can be manipulated by varying the core/shell dimen-
sions, which alter the NCs’ physical properties significantly
[3]. An important objective of wave function engineering is
to separate the electrons and holes in space. Such a spatial
separation of carriers triggers the quantum confined Stark ef-
fect (QCSE) which enhances single-exciton optical gain [4, 5].
QDs with carriers spatially separated are terms as being on
the type-II regime. The type-II QDs show considerably lower
lasing threshold than other QDs without carrier separation
which need a much higher excitation energy to achieve bi-
exciton lasing [6].

The subject of optical gain and lasing in core-shell QDs has
been intensively investigated during the past decade. Light
amplification and its dependence on NCs size were reported
[4], followed by the realization of single-exciton optical gain
[5]. In theoretical study, an approach towards analytical calcu-
lation of electronic structures of core-shell QDs was demon-
strated [7], along with simulations taking into account the am-
bient environment of the QDs [8]. It is noted that although [8]
deals only with the energy states in the conduction band, it

provides a good example for boundary condition analysis and
carrier distribution calculation.

The present work concentrates on heterostructured NCs with
CdSe as the core and CdS as the shell. In recent studies [9, 10]
it has been demonstrated that the core/shell combination of
CdSe/CdS allows making QDs that can be flexibly tuned be-
tween type-I and type-II regimes with different core/shell
sizes. The feature is termed as quasi-type-II and it is attributed
to the small value of the conduction band offset with the two
materials. Consequently, the NCs show potentials for both
type-I applications such as light emitting devices and type-II
applications like lasing.

On the other hand, variety of geometrical QD shapes available
with modern chemical and nano-engineering technology, al-
lows to develop materials for many other applications in pho-
tonics, not only to obtain optical gain and lasing. Here can
be mentioned electro-optical effect, photo-refraction, birefrin-
gence and others. Simulations of such material properties us-
ing analytical approach are rather limited (if possible at all)
for geometries with more complicated symmetry than spher-
ical or simplified cylindrical, which currently attract much
research interest [9]. Thus, a consistent numerical model is
pertinent to thoroughly map the optical properties, most im-
portantly the carrier separation, of the CdSe-CdS NCs over
the whole range of core/shell dimensions that are technically
available.
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In this work, we make a certain step ahead, and demonstrate
the ”prove of concept” allowing to simulate QDs of more com-
plicated geometry. A novel approach based on Comsol Mul-
tiphysics software package is introduced to calculate both the
electron and hole states in three-dimensional NC structures.
The interactions between the carriers are studied to examine
the dependence of the carrier overlap integral and the recom-
bination energy on the NCs sizes. Compared to the analytical
calculation in [7], the present model is more time efficient and,
at the same time, it features a strong capability of processing
novel and sophisticated geometries of the NCs.

At first, two regular structures, nanodot and nanorod, are
introduced. We report a result on carrier distribution in
nanorods that differs from that of [3]. However, our result
matches the results of [7], [11], and [12]. Subsequently, a
novel nanobone structure is proposed that has interesting
properties of zero overlap integral and a carrier localization
shift. A relatively efficient and reliable method of modelling
the CdSe-CdS NC structures and related quantum mechanical
problems is demonstrated.

2 QUANTUM MECHANICS BACKGROUND

As one of the building blocks of Comsol modelling, the quan-
tum theory that deals with the behaviour of carriers confined
in heterostructured NCs is discussed briefly in this section.
The starting point is the one-band Schrödinger equation us-
ing effective mass approximation[

− h̄2

2m∗a (r)
∇2 + Va(r)

]
ψa(r) = Eaψa(r) (1)

where a stands for the electron or hole, h̄ is the reduced
Planck constant, and m∗a (r) ,Va(r), Ea ,ψa(r) are the position-
dependent effective mass, position-dependent band edge po-
tential, eigen energy, and position-dependent carrier envelop
function, respectively, for an electron or a hole. From the point
of view of energy conservation, the first term on the left-hand
side represents particle kinetic energy, while the second term
represents the confinement energy. The right-hand side term
is the total carrier energy. Eq. (1) is solved numerically to
study the carrier dynamics in semiconductor NCs. The details
will be discussed in the later section.

For a core-shell heterostructured system embedded in a di-
electric polymer environment, a discontinuity of the conduc-
tion and valence band gap exists at the core-shell interface (in-
ternal boundary) and also at the interface between the shell
and the polymer (external boundary). The confinement poten-
tial energy can be represented as

V(r) =


Vc r < R

Vs R < r < R + H

∞ r > R + H

(2)

where R is the core radius and H is the shell thickness.

For the interior boundary between the core and shell, one im-
poses the BenDaniel-Duke condition [13]

FIG. 1 (a) Nanodot and (b) nanorod with their bandstructures. The black dot is an

electron and the white dot is a hole.

ψc(r) = ψs(r) (3a)
1

m∗a (r)
∇ψc(r) =

1
m∗a (r)

∇ψs(r) (3b)

for the envelope function; it applies to carrier transposition
across a heterojunction interface. Indices ”c” and ”s” are at-
tributed to the core and the shell, respectively.

3 MODEL CONSTRUCTION

Before approaching the solution of Eq. (1), we first examine
the modelling process in Comsol. In this case, one starts from
defining the geometry corresponding to core/shell heterstruc-
tured NCs as shown in Figure 1 for a nanodot and a nanorod.
Both 3D geometries represent the virtual images of quantum
dots. For the samples in this work, CdSe and CdS are sup-
posed to be filled in the core and shell, respectively, which
forms a CdSe/CdS heterostructure that, for instance, can be
used as the basis of photovoltaic devices. Then we assume
that the QDs are embedded in a polymer PMMA environment
where individual QDs are grown separately enough so that
the carrier wave functions do not overlap and interfere with
each other in the global structure.

We next consider some specific formalities to clarify the
physics of the situation in 3D geometry. To solve a quantum
mechanics problem in Comsol, we apply the Eigen-value
analysis module which introduces the standard eigen-value
Partial Differential Equation (PDE) coefficient form

∇(−c∇u− αu + γ) + au + β∇u = daλu− eaλ2u (4)

By comparing Eqs. (1) and (4), one obtains the coefficient set-
tings summarized in Table 1.

The conduction band offset at the CdSe/CdS interface is one
of the critical parameters for the simulation. It is by far not
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u c a β da ea α γ λ

ψa
h̄2

2m∗a
Va 0 1 0 0 0 Ea

TABLE 1 PDE coefficient settings

well established among the researchers. The reported values
for the offset vary from −0.3 to +0.3 eV [14]–[16]. Neverthe-
less, compared to the valence band offset of 0.78 eV, all these
values are relatively small in terms of carrier confinement, so
that the choice among the different values does not influence
the simulation results of electron distribution very much [17].
In this work, the value of −0.1 eV is chosen. In such a case,
a heterojunction with a straddling energy gap is formed (Fig-
ure 1). The important parameters for the sub-domain settings
are listed in Table 2.

Parameter m∗e (m0) m∗h(m0) Ve(eV) Vh(eV)

CdSe 0.13 0.45 0 0
CdS 0.2 0.7 −0.1∗∗ 0.78

TABLE 2 Effective mass and band edge potentials for CdSe and CdS, **The sign is

changed to positive in sub-domain settings due to the negative charge of an electron.

To implement the boundary settings, the relevant coefficients
q, g, r, and h are included in the generalized von Neumann
condition

n · ((c∇u + αu− γ)1 − (c∇u + αu− γ)2) + qu = g (5)

and in the Dirichlet boundary condition

n · ((c∇u + αu− γ)1 − (c∇u + αu− γ)2) + qu

= g− hTµ (6a)

hu = r (6b)

where u corresponds to the envelope function ψ in Eq. (1) and
hT is the transpose of h in a matrix form. The coefficients for
both the external and internal boundaries can be determined
by considering the physical meaning on each boundary:

External boundary. Since the NCs are surrounded by poly-
mer, the carrier wave functions cease at the external bound-
ary. Thus they satisfy the Dirichlet condition for which h = 1
and r = 0, when u is zero. Inserting this result into Eqs. (5)
and (6a) leads to q = g = 0. Therefore, one may simply ignore
Eq. (5) for external boundaries.

Internal boundary. The quantity Γ = −c∇u− αu + γ is called
the flux vector, which can experience a discontinuity in its nor-
mal component across the internal boundary. Denoting the
two adjacent sub-domains as 1 and 2 (Figure 1), Eq. (6a) can
be rewritten as

−n1 · Γ1 − n2 · Γ2 + qu = g− hTµ (7)

which describes the jump of the normal component of Γ across
the boundary. As previously described, the BenDaniel-Duke
conditions (3a) and (3b) are imposed at the internal boundary.
By multiplying both sides of Eq. (3b) by h̄2/2, one gets

c1∇u1 = c2∇u2 (8)

FIG. 2 Cross section schematics of carrier wave function ψa for (a) first and (b) second

order electrons, along with (c) first and (d) second order holes in spherical NCs of

CdSe-CdS.

Since α = γ = 0 and n1 = −n2, the following relation is
obtained

−n1 · Γ1 = n2 · Γ2 (9)

On inserting Eq. (9) into Eqs. (5), (6a) and (6b), we find that all
the coefficients q, g, r, and h are zero. All the coefficients for
the boundary settings are summarized in Table 3.

q, g, r h
External boundary 0 1
Internal boundary 0 0

TABLE 3 Boundary conditions

4 NUMERICAL RESULTS AND
DISCUSSION

In this section, we demonstrate the modeling results followed
by some discussions.

The first and second order solutions of the electron wave func-
tion ψe for spherical CdSe-CdS NCs are shown in Figures 2(a)
and 2(b), respectively. The core radius is 1.25 nm and the shell
thickness is 2 nm. The maximum and minimum values in the
scale bar are 2.177 and 0 (in arbitrary units) for Figure 2(a), and
2.274 and −2.274 for Figure 2(b). The electron eigen-energies
for Figures 2(a) and 2(b) are 0.104 eV and 0.298 eV, respec-
tively. It is observed that due to the small value of the conduc-
tion band offset the electrons are spreading from the core into
the shell. For the first order solution, the probability of find-
ing electrons in the core is higher than that in the shell. For
the second order solution, two symmetrical localization cen-
ters are found in the shell region.

The first and second order solutions of the wave function ψh
for the holes are shown in Figures 2(c) and 2(d). The maximum
and minimum values in the scale bar are 7.017 and 0 for Fig-
ure 2(c), and 6.792 and −6.792 for Figure 2(d). The hole eigen-
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FIG. 3 Carrier overlap integral as a function of core radius and shell thickness for

CdSe-CdS nanodots.

energies for Figures. 2(c) and 2(d) are 0.289 eV and 0.576 eV,
respectively. It should be pointed out that due to the large va-
lence band offset, the holes are well confined in the CdSe core
for both orders of solutions. The electron-hole overlap inte-
gral, defined as

Θeh = |〈ψh|ψe〉|2 =

[∫
ψ∗h ψedV

]2
(10)

is a critical parameter in wave function engineering in het-
erostructured NCs since it indicates the degree of carrier sep-
aration and exciton-exciton interaction energy [5]. A reduction
in Θeh leads to an increase of the electric field intensity by the
Stark shift and to a decrease of the radiative decay rate of the
excitons [3], bringing a larger probability of population inver-
sion. The overlap integral is closely related to the sizes of the
core and shell in the NCs [18]. Since the wave functions of both
electrons and holes are found in explicit form, it is convenient
to calculate the overlap integral of the carriers.

The calculation results of the carriers’ overlap integral for
spherical CdSe-CdS core-shell QDs are shown in Figure 3 as
a function of the core radius and the shell thickness in tech-
nology affordable range (1-3 nm). It is noted that the integral
value is more affected by the shell thickness than the core
radius. The thickening of the shell can effectively extract the
electrons out of the core. The minimum value of the overlap
integral is 0.23 with core radius of 1.8 nm and shell thickness
of 3 nm. On the other hand, the maximum value exceeds 0.8
with a large core and thin shell. The quasi-type-II feature of
the dots is confirmed with the large span of the electron-hole
separation. It indicates the potential of the QDs for diverse ap-
plications, such as light source with high emission intensity, or
gain media for lasing.

One of the problems counteracting building up stimulated
emission (to realize quantum dot lasers) is the non-radiative
Auger recombination which leads to an ultrafast recombina-
tion rate of the excitons and drastically drains the optical gain.
Separating the electrons and holes by wave function engineer-
ing is expected to allow lasing in the single-exciton regime
where Auger recombination is inactive [5], so that the lasing
threshold can be significantly reduced. The single-exciton re-
combination energy is calculated with the model via the rela-

FIG. 4 Stimulated emission wavelength of spherical CdSe-CdS nanodots with respect to

the core radius and shell thickness.

FIG. 5 Cross section schematics of carrier wave function ψa for (a) first and (b) second

order electrons, along with (c) first and (d) second order holes in CdSe-CdS nanorods.

tion

Ex = Eg + Ee + Eh + Weh + Ueh + Ve + Vh (11)

In (11),Eg is the gap between the minimum of the conduc-
tion band and maximum of the valence one, while Ee and Eh

correspond to the eigen-energies of the electrons and holes.
Additionally,Weh ,Ueh ,Ve , and Vh represent the Coulomb
coupling interaction, interface polarization energy, and elec-
tron/hole dielectric solvation energy, respectively. It is found
in the calculation that only the first three terms on the right
side of Eq. (11) dominate. The stimulated emission wave-
lengths of the first order carrier recombination for spherical
CdSe-CdS nanodots are shown in Figure 4.

It is known that the carrier separation with spherical NCs is
not straightforward. The Gaussian distribution of the elec-
trons determines that they cannot be fully extracted to the
shell. Thus, it is impossible to totally eliminate the rapid
recombination of both electrons and holes within the core.
Meanwhile, the sensitive dependence of the overlap integral
on the core/shell dimensions brings difficulties to the fabrica-
tion in terms of size distribution control. Therefore, the poten-
tial of the dots to achieve optical gain is restricted. A high as-
pect ratio nanorod is one of the attractive approaches to over-
come the limitation. The distribution maximum of electrons
can be moved from the core into the elongated shell, mean-
while with the holes still being confined in the core. In this
case, a more thorough carrier separation can be achieved.
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FIG. 6 Schematic of core-shell bone structure.

FIG. 7 Cross section schematics of carrier wave function ψa for (a) first and (b) second

order electrons, along with (c) first and (d) second order holes in bone-like CdSe-CdS

NCs.

The simulation results of carrier distribution within CdSe-CdS
core/shell nanorod are shown in Figure 5. The core radius is
2 nm and the shell length is 16 nm. The maximum and mini-
mum values in the scale bar are 3.678 and 0 for Figure 5(a), and
3.403 and −3.42 for Figure 5(b). The electron eigen-energies
for Figures 5(a) and 5(b) are 0.089 eV and 0.126 eV, respec-
tively. The maximum and minimum values in the scale bar
are 5.35 and 0 for Figure 5(c), and 4.378 and −3.42 for Fig-
ure 5(d). The hole eigen-energies for Figure 5(c) and (d) are
0.143 eV and 0.293 eV, respectively. It is noticed that with both
the first and second order solutions the carriers are completely
separated in space within the nanorods, which is promising
to introduce QCSE to further encourage single-exciton optical
gain.

Furthermore, a novel bone-like heterostructure is proposed
and investigated (Figure 6). The core/shell materials are
adopted from the nanodot and nanorod. The spheres at both
ends are of the same size while the CdSe core is located only
at one end. A core diameter of 3.5 nm and a shell thickness of
1.5 nm are implemented in the simulation. The middle link is
20 nm long and 2 nm wide.

The first and second order solutions of the electron wave
function ψe for the nanobone are shown in Figures 7(a) and
7(b), respectively. The maximum and minimum values in the
scale bar are 10.117 and 0 for Figure 7(a), and 5.463 and 0 for
Figure 7(b). The electron eigen-energies for Figures 7(a) and
7(b) are 0.300 eV and 0.339 eV, respectively. The first and sec-
ond order solutions of the wave function ψh for the holes are
shown in Figures 7(c) and 7(d). The maximum and minimum
values in the scale bar are 8.823 and 0 for Figure 7(c), and 6.373
and −6.405 for Figure 7(d). The hole eigen-energies for Fig-
ures 7(c) and 7(d) are 0.176 eV and 0.359 eV, respectively.

For the first order solution, the electrons and the holes are
fully separated into the two ends of the structure, which is

FIG. 8 Stimulated emission wavelength of CdSe-CdS nanospheres, nanorods, and

nanobones with core radius of 1.75 nm and shell thickness from 0.75 to 1.75 nm.

of great importance for achieving single-exciton optical gain.
Interestingly, the electrons are ”jumping” back from the non-
core end to the core end for the second order solution, while
the holes are still confined in the core. Such a peculiar behavior
can have a fundamental origin related to rather complicated
distribution of energy potential through the nano-bone struc-
ture and different effective masses of electrons and holes. Due
to smaller effective mass (as a general case), electrons tend to
easier pass a ”bottleneck” bridge between the two ends and
occupy a state with lower energy, that is not the case for holes
with lower mobility. However, to fully understand the phe-
nomenon, much more detailed investigations are required.

The strong contrast of the overlap integral for the first two
orders of solutions (including most of the carriers) suggests
that the bone-like NCs may be suitable not only for lasing
applications, but also for situations in which logical or in-
telligent optical components are involved. For example, clear
spatial separation of electron-hole pairs can be implemented
to generate a photo-refractive effect. Strong polarization re-
sponse of elementary dipoles (here nano-bones can be consid-
ered as ”macro-dipoles”) induced by optical excitation results
in modulation of refractive index, that can be used to create
an elementary optical gate.

The stimulated emission wavelength of the nanobone is exam-
ined. The results show that the wavelength does not depend
on the length of the middle link in the structure. This implies
that the nanobone structure has a high tolerance for its length
variation when it is grown for lasing applications.

In Figure 8, the stimulated emission wavelengths of CdSe-
CdS nanodots, nanorods, and nanobones are compared. All
three structures have the same core radius of 1.75 nm. The
shell thickness varies from 0.75 to 1.75 nm. It is seen that
with all the structures the stimulated emission is red shifted
as the shell thickness increases, which is attributed to the
size effect of QDs. With equal core radius and shell thickness,
the nanorod presents the longest stimulated emission wave-
length, followed by the nanobone and the nanodot.
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5 CONCLUSIONS

A novel model based on the one-band Schrödinger equation is
proposed for CdSe-CdS core-shell heterostructured nanocrys-
tals. The carrier distribution, separation, and eigen-state ener-
gies can be determined numerically with the model. Different
geometries of nanodot, nanorod, and nanobone are investi-
gated. Indeed, this approach can be used practically for any
3D geometry of QDs (sophisticate tetrahedral shapes shown
in [9] is one of the examples) that is impossible with analytical
methods. This can be also very useful for analysing possible
deviation of the optical properties of QDs due to fabrication
imperfections resulting in distortions of originally designed
shapes. The quasi-type-II feature of CdSe-CdS nanodots is
confirmed by mapping the carrier overlap integral on vary-
ing core/shell sizes. The proposed bone-like structures show
distinct features of carrier distribution, which are attractive
for novel photonic applications. Additionally, the model is ad-
vantageous in its time efficiency and capability of solving NCs
with irregular and sophisticated geometries.
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