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A numerical method is presented for sizing of highly conductive penetrable and perfectly electrically conducting (PEC) submicron wires on
substrates. For efficiency, the Method of Auxiliary Sources is used in the forward model of the inverse Kirsch-Kress Method. The radius of
the circular cross section of PEC and silver wires positioned on a semi-infinite silicon substrate is estimated based on numerically simulated
scattered far field. The illumination is monochromatic, transverse electric (TE) polarised, and with fixed angle of incidence. Average relative
errors smaller than 1% and 5% are achieved for PEC and penetrable wires, respectively, in the dynamic ranges 0.2–1.3 and 0.8–1.3 times
the operating free-space wavelength, respectively. In all cases, the inversion time is less than 1 sec. [DOI: 10.2971/jeos.2011.11039]
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1 INTRODUCTION

Optical characterisation of submicron structures, for example
in the production and quality control of functional materials,
typically involves the solution of inverse scattering problems.
A commonly used scheme for the numerical solution of such
problems is the Kirsch-Kress Method (KKM), see Kirsch and
Kress [1] and Colton and Kress [2] [Section 7.3]. Here, essen-
tially, the scattered near field is reconstructed from the given
data using a forward scattering model, whereafter the posi-
tion and shape of the scatterer are estimated by minimising a
boundary condition error within a class of admissible bound-
aries. This can be performed in a single, Tikhonov-regularised
optimisation, or by conducting two separate, consecutive op-
timisations, the first ill-posed and the second nonlinear. Be-
cause of the separation of the ill-posed and the nonlinear ele-
ments of the inversion, the KKM is a decomposition method.

The reconstructed scattered near field is typically expressed
in terms of radiation integrals, and since this field is evaluated
many times during the boundary-error minimisation in KKM,
the efficiency of the computation of the radiation integrals
greatly influences the overall efficiency of the inversion. In the
inversion of structures on substrates, the efficiency of the for-
ward model is especially important, since the scattered near
field in this case is given by radiation integrals that involve a
half-space (or half-plane) Green’s function. Such Green’s func-
tions, in turn, involve Sommerfeld-type integrals (see, e.g.,
Felsen and Marcuvitz [3] or Rahmat-Samii et al. [4]), and are
therefore generally computationally expensive. To speed up
the inversion, the forward model can be cast in terms of the
so-called Method of Auxiliary Sources (MAS), where the sur-
face current distributions in the radiation integrals are approx-

imated by Dirac delta sources (line currents, dipoles etc.) For a
description of the MAS, see [5]–[10] and the references therein.

The MAS was already used in conjunction with KKM in the
numerical solution of inverse problems. For example, Tal and
Leviatan [11] described a procedure for the reconstruction of
the position and shape of PEC cylinders in two-dimensional
free space, based on the amplitude and phase of the scattered
far field. In the same paper, Tal and Leviatan presented nu-
merical results for circular and elliptic cross section PEC cylin-
ders, with the scattered field available in all directions of ob-
servation. Later, Lin and Kiang [12] used a combination of
MAS and a Tikhonov-regularised KKM to estimate the posi-
tion and shape of more complicated PEC cylinders in two-
dimensional free space, based on the amplitude and phase
of the scattered near field given in all directions of obser-
vation. Obelleiro et al. [13] reconstructed boundaries of two-
dimensional PEC objects using generalised multipoles and
based on the scattered near field sampled at a linear array of
points. More recently, Alves and Martins [14] found the shape
and location of inclusions and cavities in elastic bodies from
the Cauchy data given at an external boundary.

In Karamehmedović et al. [15], we made an extensive numer-
ical study of an efficient MAS-based model for forward scat-
tering by PEC and penetrable submicron wires on substrates
(see Eremina et al. [16, 17] for a related model for gold and sil-
ver spheroidal particles on glass.) Our purpose here is to use
the model of [15] to construct an efficient inversion scheme
of the Kirsch-Kress type for sizing of such PEC and highly
conductive penetrable wires. As a test problem, we estimate
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FIG. 1 Cross section of a wire on a silicon substrate.

the cross-section radius of a PEC or silver (Ag) penetrable
wire positioned on a semi-infinite silicon (Si) substrate. The
measured data are simulated using the commercially avail-
able FEM solver COMSOL Multiphysics® [18, 19]. Thus the
synthesis of the data is done using a Finite Element Method-
based scheme, and the inversion is done using a layer poten-
tial method – the underlying formulations being entirely dif-
ferent, we avoid so-called inverse crimes. In practical charac-
terisation of submicron structures on surfaces, the scattered
far field is typically measured only over a small aperture,
rather than being available in all directions of observation. For
PEC wires, we therefore limit the available far-field data to a
45◦ aperture (or, due to the symmetry of the problem, a 90◦

aperture). At the moment, we require a larger aperture for Ag
wires.

The inverse problem is described in Section 2. In Section 3, the
numerical method used for the solution of the inverse prob-
lem is specified. The results are presented and discussed in
Section 4. Finally, conclusions and suggestions for future work
are given in Section 5.

2 THE INVERSE SCATTERING PROBLEM

Figure 1 illustrates the measurement setup behind the con-
sidered inverse scattering problem. A PEC or Ag submicron
wire of circular cross section Σ with boundary σ of radius rσ

is positioned on a planar, semi-infinite Si substrate and illu-
minated by a time-harmonic, uniform plane wave of trans-
verse electric (TE) polarisation and unit amplitude. The plane
wave propagates in the normal direction on the substrate,
and the operating free-space wavelength λ0 is 325 nm. The
time-dependence factor, in the following suppressed for sim-

plicity, is ejωt. According to Palik [20], the complex refrac-
tive indices of silver and silicon are nAg = 0.571 − j0.636
and nSi = 5.05506 − j3.20418, respectively, at the operating
wavelength. A bistatic measurement of the scattered far field
is done in an angular range [0◦, Φ], as shown in Figure 1 (note
the symmetry of the problem.) The maximal measurement an-
gle Φ from the direction of normal incidence is fixed between
0◦ (measurement in the forward direction only) and 90◦ (mea-
surement in the whole available range above the substrate.)
The inverse problem is to estimate the radius rσ of the wire
boundary based on the knowledge of the incident field and
on the measured far field. It is assumed known where the
wire is centered, and the cross-section radius rσ is assumed
to be within some specified interval [a, b]. In the following, we
use the Cartesian coordinate system (x, y, z) shown in Figure 1
and with the origin at the contact point between the substrate
and the wire. Note the unit vectors x̂, ŷ and ẑ pointing in the
respective coordinate directions.

3 THE NUMERICAL METHOD

The inverse problem of Section 2 is here solved numerically in
two steps. The first, ill-posed step, minimises a functional of
the form

CN′ 3 C 7→ f (C) = ‖Es
f ar(C)− Emeasured

f ar ‖2
L2([0◦ ,Φ]), (1)

where Es
f ar is the electric far field produced by the forward

scattering model, C ∈ CN′ is a vector of complex values
used in the forward model, as explained shortly, and where
‖ · ‖L2([0◦ ,Φ]) is the usual L2-norm on the interval [0, Φ]. Once
the optimal vector C is found, the near field associated with
the measured far field Emeasured

f ar can be approximately recon-
structed.

In the second, nonlinear step, the reconstructed near field is
probed within the domain

{(x, y) ∈ R2, |x| ≤ b, 0 ≤ y ≤ 2b} (2)

that is expected to be occupied by the wire cross section. Recall
that the positive numbers a and b are the expected lower and
upper bounds, respectively, on the wire cross-section radius.

To describe how the objective functional f is computed,
we need to briefly recapitulate the forward model for
PEC particles on substrates examined in Karamehme-
dović et al. [15]. In Figure 1, the incident field prop-
agates in the negative y direction, and it is given by
(Ei, Hi) = (ẑEi, x̂Hi) = (ẑejk0y,−x̂η−1

0 ejk0y), where
k0 = 2π/λ0 is its wavenumber and η0 ≈ 377Ω is the
free-space impedance. With no wire present, the incident
field is reflected (and refracted) at the air-substrate in-
terface γ, giving rise to a reflected uniform plane wave
(Ere f l , Hre f l) = (ẑEre f l , x̂Hre f l) = Γr(ẑe−jk0y, x̂η−1

0 e−jk0y) in
the upper half-plane R2

+ and propagating
in the positive y direction, as well as a
transmitted uniform plane wave (Etrans, Htrans) =

(ẑEtrans, x̂Htrans) = Γt(ẑejkSiy,−x̂nSiη
−1
0 ejk0y) in the lower

half-plane and propagating in the negative y direction.
Here, the Fresnel reflection coefficient Γr and transmission
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coefficient Γt for normal incidence upon the air-substrate
interface at 325nm are given by

Γr =
n0 − nSi
n0 + nSi

≈ −0.742 + j0.137

and Γt =
2n0

n0 + nSi
≈ 0.258 + j0.137,

(3)

respectively, with n0 = 1 being the refractive index of air.
Write Etot = ẑEtot for the total electric field with the wire
present. In the PEC wire case, the total tangential electric field
vanishes at the wire cross section boundary σ. In the penetra-
ble case (Ag wire), the total tangential electric and magnetic
fields are continuous across the boundary σ. In both cases,
the tangential components of the total electric and magnetic
fields are continuous across the air-substrate interface γ. The
incident field satisfies (∆ + k2

0)Ei = 0 in R2 and it is continu-
ous with continuous normal derivative across the boundaries
γ and σ, so the scattered field Es = Etot − Ei solves the inho-
mogeneous Helmholtz problem

(∆ + k2
0)Es = 0 in R2

+ \ Σ, (4)

(∆ + k2
Si)Es = −(∆ + k2

Si)Ei, y < 0, (5)

(∆ + k2
Ag)Es = −(∆ + k2

Ag)Ei in Σ (penetrable wire),(6)

Es
σ+ = −Ei

σ+ on σ (PEC wire), (7)

Es
σ+ = Es

σ− on σ (penetrable wire), (8)

(∂νEs)σ+ = (∂νEs)σ− on σ (penetrable wire), (9)

lim
y↗0

Es = lim
y↘0

Es on γ, (10)

lim
y↗0

∂yEs = lim
y↘0

∂yEs on γ. (11)

Here kSi = nSik0 is the wavenumber in the half-plane filled
with the substrate, the vector ν is the unit outward normal
to the cross section Σ, and the subscripts σ+ and σ− signify
limit values at σ taken from the exterior R2

+ \ Σ and from
the interior Σ of the wire cross section, respectively. A ma-
jor point now is that, for the sizing of penetrable submicron
wires presented in this paper, we assume the wire is suffi-
ciently conductive for the total electric field inside its cross
section Σ to be negligible. Thus, in the penetrable case, we here
assume Equation (6) is satisfied and replace the transmission con-
ditions (8) and (9) by the PEC Dirichlet boundary condition (7).
Also, we wish to work with a scattered field expressed in
terms of a single layer potential over the wire boundary σ,
and are therefore interested in reformulating the problem (4)–
(11) in terms of a problem with no inhomogeneous terms in
the Helmholtz equations for the lower and upper half-planes.
Defining a new incident field by ẑẼi = Ẽi = Ei + Ere f l for
y > 0 and Ẽi = Etrans for y < 0, the corresponding scattered
field Es = Etot − Ẽi satisfies the problem

(∆ + k2
0)Es = 0 in R2

+ \ Σ, (12)

(∆ + k2
Si)Es = 0, y < 0, (13)

Es = −(Ei + Ere f l) on σ, (14)

lim
y↗0

Es = lim
y↘0

Es on γ, (15)

lim
y↗0

∂yEs = lim
y↘0

∂yEs on γ, (16)

since (∆ + k2
0)Ẽi = 0 for y > 0 and (∆ + k2

Si)Ẽi = 0 for y < 0,
and since Ẽi is continuous with continuous normal derivative

across the interface γ (due to 1 + Γr = Γt). Let Φ1/2(·, x′) be
the outgoing fundamental solution of the Helmholtz operator
in the air-substrate medium, with singularity at x′ and contin-
uous with continuous normal derivative across the interface
γ. Then a solution of the problem (12)–(16) is given by the sin-
gle layer potential

Es(x) =
∫

x′∈σ
g(x′)Φ1/2(x, x′), x ∈ R2 \ Σ, (17)

provided the surface current distribution g on the cross-
section boundary σ satisfies the integral equation∫

x′∈σ
g(x′)Φ1/2(x, x′) = −(Ei(x) + Ere f l(x)), x ∈ σ. (18)

Introduction of the incident field Ẽi (and, in the penetrable
wire case, the PEC approximation) thus simplifies the origi-
nal problem (4)–(11) to a single integral equation. In the up-
per half-plane, the Green’s function Φ1/2 is given, e.g., in Eqn.
(54)-(54c), Section 5.5e, p. 527 of Felsen and Marcuvitz [3] (here
reproduced with our time-dependence factor ejωt and in our
coordinate system):

Φ1/2(x, x′) =
1
4j

H(2)
0 (k0|x− x′|)

− j
4π

∫ ∞

η=−∞
e−j(η(x−x′)+(k2

0−η2)1/2(y+y′))

× Γ(η)(k2
0 − η2)−1/2

(19)

for x = (x, y) and x′ = (x′, y′), with x, x′ ∈ R and y, y′ > 0.
Here, for each real η,

Γ(η) =
(k2

0 − η2)1/2 − (k2
Si − η2)1/2

(k2
0 − η2)1/2 + (k2

Si − η2)1/2
. (20)

The half-plane Green’s function Φ1/2 is generally numerically
expensive, due to the presence of the integral in (19) account-
ing for the interface effect. Equation (18) is now discretised in
terms of the Method of Auxiliary Sources, and using a par-
ticular approximation of the half-plane Green’s function Φ1/2.
Assume the bounds a and b on the cross-section radius rσ are
given, and refer to Figure 2. A so-called auxiliary surface κ′,
conformal to the smallest expected wire cross-section, is fixed.
In the present case, κ′ is simply a circle of radius r′ < a and
centered at (x, y) = (0, a). In the numerical examples pre-
sented here, we always set r′ = 0.86a. This choice of the aux-
iliary surface is based on numerical experimentation, and we
do not claim that it is optimal. The scattered electric field Es

in the exterior of the yet unknown cross section Σ in the up-
per half-plane is approximated by a finite linear combination
of fields radiated by z-directed electric line currents (so-called
auxiliary sources) and their reflections in the silicon substrate,

Es(x) ≈ ẑ
N′

∑
ν=1

Cν

(
H(2)

0 (k0|x− x′ν|)

+ Γr H(2)
0 (k0|x− x̃′ν|)

)
, x ∈ R2

+ \ Σ.

(21)

Here, Cν, ν = 1, . . . , N′, are unknown complex amplitudes
of the auxiliary sources, and H(2)

0 is the Hankel function of
zero order and second kind. The points x′1, . . . , x′N′ are the lo-
cations of the auxiliary sources, and for each x′ν = (x′ν, y′ν) the
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FIG. 3 The MAS forward scattering model: reconstructing the scattered near field.

point x̃′ν = (x′ν,−y′ν) is the reflection of x′ν with respect to the
x axis. See Figure 3 for an illustration. The auxiliary sources
are uniformly distributed along the auxiliary surface κ′. Note
that, since H(2)

0 (k0| · |) is proportional to the radial outgoing
fundamental solution of the two-dimensional Helmholtz op-
erator in free space, the auxiliary sources and their reflections
in (21) radiate in free space, i.e., with wire and substrate absent.
This approximation of the half-plane Green’s function for the
air-substrate system by reflections is the only approximation
of the interaction between the metallic cylinder and the sub-
strate in the model. The vector C = (C1, . . . , CN′ ) ∈ CN′ of
auxiliary source amplitudes is found by minimising the dis-
crepancy, with respect to the L2([0◦, Φ])-norm, between the
measured electric far field Emeasured

f ar and the electric far field
Es

f ar(C) produced by the MAS finite linear combination (21).
In the numerical implementation, the far fields are sampled at
a finite number of testing points x1, . . . , xM located a distance R
from the origin and uniformly distributed within an angular
interval [0◦, Φ], see Figure 3. The functional f to be minimised
is thus proportional to

M

∑
µ=1

∣∣∣Emeasured
f ar (φµ)−

N′

∑
ν=1

Cν

(
H(2)

0 (k0|x− x′ν|)

+ Γr H(2)
0 (k0|x− x̃′ν|)

)∣∣∣2.

(22)

Using the large-argument asymptotic expressions
√

πk0R
1 + j

ejk0R H(2)
0 (k0|xµ − x′ν|) ∼ ejk0|x′ν | cos(φµ−φ′ν), (23)

√
πk0R

1 + j
ejk0R H(2)

0 (k0|xµ − x̃′ν|) ∼ ejk0|x′ν | cos(φµ+φ′ν) (24)

for the Hankel function H(2)
0 , we obtain a numerically more

efficient, far-field form of the functional f , namely

M

∑
µ=1

∣∣∣Emeasured
f ar (φµ)− e−jk0R 1 + j√

πk0R

×
N′

∑
ν=1

Cν

(
ejk0|x′ν | cos(φµ−φ′ν) + Γrejk0|x′ν | cos(φµ+φ′ν)

)∣∣∣2.

(25)

Here, the angles φµ and φ′ν (both within the interval [0, π]) are
the azimuthal coordinates of the testing points and of the aux-
iliary sources, respectively, in the cylindrical (ρ, φ, z) coordi-
nate system associated with the Cartesian system of Figure 1.
Minimising (22) or (25) with respect to the auxiliary source
amplitudes Cν is a linear least-squares problem, and we here
solve it by solving the associated normal equations; for
example, with Tµν = H(2)

0 (k0|xµ − x̃′ν|) + Γr H(2)
0 (k0|xµ − x̃′ν|)

and eµ = Emeasured
f ar (φµ), the problem is to minimise

‖TC− e‖l2 , and the optimum vector C is here found by calcu-
lating

C = (T∗T)−1T∗e. (26)

Figures 4–6 illustrate the quality of the resulting reconstruc-
tion of the scatterer. The figures show the absolute value and
the phase of the PEC boundary condition error

Es(x, y) + Ei(x, y) + Ere f l(x, y) =
N′

∑
ν=1

Cν

×
(

H(2)
0 (k0|(x, y)− x′ν|) + Γr H(2)

0 (k0|(x, y)− x̃′ν|)
)

+ ejk0y + Γre−jk0y

(27)
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FIG. 4 Logarithm of the absolute value of the PEC boundary condition error: PEC sub-

micron wire, rσ = 0.5λ0, Φ = 75◦.

for PEC and Ag wires of radius 0.5λ0. The results in figures 4–
6 were obtained using the Hankel function H(2)

0 in the expres-
sion for the scattered field; employing far-field asymptotic ex-
pressions results in slightly more blurred reconstructions of
the near field.

FIG. 5 Phase of the PEC boundary condition error: PEC submicron wire, rσ = 0.5λ0,

Φ = 75◦.

Because all fields considered here are TE-polarised, the elec-
tric intensity vector is parallel with the wire surface, and thus
the PEC boundary condition error is simply the total electric
field. The symmetry of the problem is used to halve the num-
ber of actual near-field observation points. In all cases the near
field is computed on a 160× 160 grid. The parameters of the
forward model used to obtain figures 4–6 were chosen with
near-field quality, and not computational efficiency, in mind.
The near-field computation takes approximately 260 sec for
each of the figures. A total of 40 auxiliary sources are used,
and the far field is sampled at 20 testing points in the angular
range [0◦, 75◦] from normal incidence. The radius of the aux-
iliary surface κ′ is set to 0.86rσ. The locations of the auxiliary
sources radiating the approximation of the scattered near field
Es are clearly visible as ’bright spots’ in the figures.

The quality of the reconstructed near field seems highest in

FIG. 6 Logarithm of the absolute value of the PEC boundary condition error: Ag submi-

cron wire, rσ = 0.5λ0, Φ = 75◦.

the direction of forward scattering (that is, along the positive
y axis,) which is unsurprising since the illumination (Ei, Hi) is
normally incident and the far-field sampling, due to the sym-
metry of the problem, is centered about the y axis. The loci
of the boundary condition error minima, as well as the phase
jumps in the boundary condition error, give a rough reproduc-
tion of the top half of the wire cross section. The picture seems
less sharp in the penetrable case, where the wire material has
only finite conductivity, and where the PEC approximation is
less adequate, especially for electrically small scatterers.

Since it is well-known that the wires have circular cross sec-
tion, a natural approach would now be to minimise, in the
least squares sense, the boundary condition error sampled
within a family of circular arcs

Aβ1,β2(r) ={(x, y) ∈ R2, x = r cos ϕ, y = r(1 + sin ϕ),

ϕ ∈ [β1, β2]},
r ∈ [a, b], −90◦ ≤ β1 ≤ β2 ≤ 90◦

(28)

with some fixed central angle β2 − β1. In this paper, we con-
sider the numerically inexpensive special case of sampling
along the y-axis (β1 = β2 = 90◦) within the range y ∈ [a, b].
The position of the global minimum in the sampled boundary
condition error is interpreted as the approximate height of the
wire. The resulting boundary error minimisation turns out to
be relatively well-posed, especially for PEC wires. An exam-
ple is given in Figure 7. For sufficiently high quality of the re-
constructed near field, we did find it possible to obtain good
estimates of the wire cross section radius also when testing
the boundary condition error along circular arcs with central
angle greater than zero. However, we experienced that the ap-
proach with β2 − β1 > 0 does not improve the accuracy of the
inversion. Indeed, we observed that when the far-field obser-
vation aperture is narrower, and when the parameters of the
forward scattering model are optimised for speed, the prob-
lem of minimising the boundary condition error over circular
arcs can be highly ill-posed, even for PEC wires.

The approximation of the half-plane Green’s function by re-
flections, as given in (21), is crude and can be improved by im-
plementing well-known, numerically inexpensive modifica-
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tions. First, following Section 5.5e of Felsen and Marcuvitz [3],
we can arrive at a far-field approximation of the interaction
term in Φ1/2(·, x′) (see Eqn. (19)) valid in the upper half-plane
and given by

Γ(k0 sin α)
1 + j√
πk0R

e−jk0(R−|x′ | cos(φ+φ′)). (29)

Here, the angle-dependent Fresnel reflection coefficient is de-
fined by

Γ(k0 sin α) =
cos α− (n2

Si − sin2 α)1/2

cos α + (n2
Si − sin2 α)1/2

, (30)

and α is the angle between the normal to the air-substrate in-
terface and the straight line segment connecting the image
source point x̃′ and the observation point x (as already de-
fined, the angles φ and φ′ are the azimuthal coordinates of the
points x and x′, respectively.) It is readily seen that Γr = Γ(0),
and that our approximation by reflections is only accurate for
small values of the angle α.

Second, the exact image of a time-harmonic, TE electric line
source of constant amplitude and located at x′ is an electric
ẑ-directed current located in complex space and radiating a
field proportional to (see, e.g., Lindell and Alanen [21, 22])∫ ∞

p=0
p−1 J2(p)H(2)

0 (k0 dist( x, x̃′

+ ŷjpk−1
0 (n2

Si − 1)−1/2 )).
(31)

Since |n2
Si/n2

0| ≈ 35.8 is relatively large, this image can be ap-
proximated (see Section III of Lindell and Alanen [21]) by an
electric ẑ-directed line source phase shifted π radians rela-
tive to the original source, and located at the complex
depth −y′ + 2jk−1

0 (n2
Si − 1)−1/2 ≈ −y′+(-0.03+j0.04)λ0.

A detailed analysis of the inversion using the above alterna-
tive expressions for the half-plane Green’s functions is outside
the scope of this paper. We note, however, that our numerical
experiments have shown that – at least when the far-field ob-
servation points xµ are restricted to a narrow angle interval
from normal – the use of these approximations results in sig-
nificantly higher condition numbers of the matrix T in (26),

FIG. 8 Absolute value of the PEC boundary condition error, obtained using a global

nonlinear optimiser. Ag submicron wire, rσ = 1λ0, Φ =75◦.

compared to the case where the simple Fresnel reflection ap-
proximation is employed. The condition number of the sys-
tem matrix T is inherently large, since the distances |x′ν− x′ν+1|
and |xµ − xµ+1| between neighbouring auxiliary sources and
neighbouring testing points are much smaller than the dis-
tances |xµ − x′ν| between the sources and the testing points;
for example, it holds that

|xµ+1 − x′ν| ≈ |xµ+1 − x′ν| − |xµ − xµ+1| ≤ |xµ − x′ν|
≤ |xµ+1 − x′ν|+ |xµ − xµ+1|
≈ |xµ+1 − x′ν|,

(32)

that is, |xµ − x′ν| ≈ |xµ+1 − x′ν|. Consequently, the computed
amplitudes of the auxiliary sources are typically large, and,
as evident in figures 4 and 6, this distorts the reconstructed
near field in a region around the sources. The distortion can
result in poor accuracy of the overall inversion method. In
contrast, the reconstruction in Figure 8 is obtained using the
freely available Ipopt global optimisation software [23]. The
optimisation was constrained, with the set of permissible val-
ues of <Cν and =Cν being the interval [−1V/m, 1V/m]. Even
though the resulting inversion method turns out to have a
much smaller dynamic range (while being numerically much
less efficient than simply solving the normal equations), it is
seen that keeping the amplitude of the sources low improves
the overall quality of the reconstruction of the near field. Fig-
ure 8 is here included for illustration only, and we leave a
thorough investigation of inversion based on a global nonlin-
ear optimiser to future work. Returning to the alternative ap-
proximations of the half-plane Green’s function, the reason for
the increase in the condition number of T is probably that, for
sources close to the air-substrate interface, the far-field phase
of these approximations varies more slowly with the angle
of observation than is the case for the simple approximation
by reflection. The slow variation in the phase namely dimin-
ishes the variation between the components of the columns of
the system matrix T that correspond to sources close to the
interface. As an example, Figure 9 shows the far-field phase
for the combined unit electric line source with support
at (x′, y′) = (±0.172, 0.2)λ0. This combined source is situ-
ated at the auxiliary surface used by our forward scattering
model in the PEC-case inversion presented in Section 4. The
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FIG. 9 The phase of the electric far field with the forward scattering model using

three different approximations for the half-plane Green’s function. The support of the

combined source is (x′ , y′) = (±0.172,0.2)λ0.

forward model also includes sources that are closer to the air-
substrate interface. The phases in Figure 9 are computed using
the constant reflection coefficient approximation, the variable
reflection coefficient approximation and the complex image
approximation. While the three approximations produce al-
most the same amplitude of the far field in the angular range
Φ ∈ [0◦, 60◦], the far-field phase produced by the constant
reflection coefficient approximation clearly varies the most.
Using the Singular Value Decomposition (SVD) can reduce
the condition number of T significantly, but an increase in the
smallest acceptable singular value also results in a poorer ap-
proximation of the given far field. Our numerical experiments
have not yet shown an advantage in using the SVD in con-
junction with the correct far-field expressions, as opposed to
solving the normal equations for the constant reflection coef-
ficient approximation.

4 NUMERICAL RESULTS

In the following, the total number of far-field testing points is
formally set to M = 40, and the number of auxiliary sources
is formally N′ = 10 in the PEC case and N′ = 20 in the Ag
case. Due to the symmetry of the problem with respect to the
y axis, this gives overdetermined systems of 20 equations with
5 and 10 unknown auxiliary source amplitudes Cν, respec-
tively. The inversion is implemented in MATLAB® and run
on a single 2.66GHz standard PC core, with 4Gb memory. All
far-field quantities are here evaluated at a distance of 12.5λ0
from the wire. The reconstructed near field is sampled at ap-
proximately 170 (PEC case) and 90 (Ag case) equidistantly dis-
tributed points along the straight line segment [0.86a, b] on the
y axis.

Results of the inversion are shown in tables 1 and 2. The tables
show actual wire radii, estimates after inversion and the asso-
ciated relative errors and execution times. The actual cross-
section radii rσ and estimated radii r are given in wavelengths
λ0. The estimates r are rounded to four decimal places, while

the relative error ε = 100(r− rσ)/rσ, the relative far-field error
and the execution time are rounded to two decimal places.

actual estimate r error ε

radius rσ PEC (%), PEC

0.2 0.1990 -0.50
0.3 0.2967 -1.10
0.4 0.3945 -1.38
0.5 0.4987 -0.26
0.6 0.5899 -1.68
0.7 0.7007 0.10
0.8 0.7984 -0.20
0.9 0.8896 -1.16
1.0 1.0003 0.03
1.1 1.0980 -0.18
1.2 1.1958 -0.35
1.3 1.2935 -0.50

avg. |ε| (%) - 0.62
avg. time (s) - 0.86
avg. far-field - 0.54

error (%)

TABLE 1 Actual cross-section radii, estimates and errors: PEC submicron wires, Φ =

45◦, a = 0.2λ0, b = 1.3λ0, effectively 5 auxiliary sources used.

actual estimate r error ε

radius rσ Ag (%), Ag

0.8 0.8022 0.27
0.9 0.8474 -5.84
1.0 0.9315 -6.85
1.1 1.0349 -5.92
1.2 1.1319 -5.68
1.3 1.2353 -4.98

avg. |ε| (%) - 4.92
avg. time (s) - 0.95
avg. far-field - 0.40

error (%)

TABLE 2 Actual cross-section radii, estimates and errors: Ag submicron wires, Φ = 90◦,

a = 0.8λ0, b = 1.3λ0, effectively 10 auxiliary sources used.

For the results of tables 1 and 2, the form (22) of the func-
tional f is used. As expected, the error in the PEC estimates
is lower than that in the Ag case. For the considered inver-
sions, the absolute value |ε| of the relative inversion error is
less than 1.7% in the PEC case and less than 7% in the Ag case.
In all cases, the total execution time is less than 1 sec, and it is
mainly spent on the second step of the inversion, i.e., on sam-
pling of the reconstructed near field along a subset of the y-
axis. In the PEC case, the inversion works well over the whole
test range of wire radii; however, at the moment it proves gen-
erally inaccurate for penetrable (Ag) wires of radius less than
approximately 0.5λ0, even if the number of auxiliary sources
is increased. Also, it seems necessary to provide the far-field
data in a larger angular range for penetrable wires than for
PEC wires.

In the PEC wire case, using a total of 8 auxiliary sources and
the far-field approximation (25) of the objective functional f in
the first step of the inversion yields an average value of |ε| of
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3.24%, and a total execution time of 0.64 sec per inversion. For
the penetrable wires, using a total of 20 auxiliary sources and
the above far-field approximation results in an average value
of |ε| of 5.11%, with execution time 0.80 sec per inversion.

Finally, for inversion using the variable Fresnel reflection co-
efficient Γ(kSi cos α), we found a good choice of the SVD tol-
erance to be 10−4. Over the same dynamical ranges as above,
this choice results in the average absolute value of the relative
error ε of 6.94% in the PEC case and 5.96% in the Ag case. The
execution time is approximately 0.96 sec for each inversion.

5 CONCLUSION AND FURTHER WORK

A numerical inversion method was proposed for sizing of
perfectly electrically conducting and highly conductive pen-
etrable submicron wires on substrates. The method is essen-
tially a Kirsch-Kress inverse scheme with the forward scat-
tering model formulated in terms of the Method of Auxil-
iary Sources. The proposed scheme was applied to the siz-
ing of PEC and silver submicron wires of circular cross sec-
tion on a silicon substrate, with numerically simulated scat-
tered far field available in a 45◦ aperture (PEC case) and 90◦

aperture (Ag case). The operating free-space wavelength was
λ0 = 325nm, and the range of wire radii for which the in-
version was accurate was found to be at least 0.2λ0−1.3λ0
in the PEC case, and at least 0.8λ0−1.3λ0 in the Ag case. In
this range, relative errors of less than 1.7% and less than 7%
were achieved in the PEC and the penetrable case, respec-
tively. The average relative errors were 0.62% and 4.92%, re-
spectively, and all inversion times were shorter than 1 sec.
Thus, at least for perfectly electrically conducting wires, the
inversion scheme can accomodate a wide range of scatterer
sizes using a single set of parameters.

Futher work includes investigation of the performance of the
proposed inversion method in the two-dimensional trans-
verse magnetic (TM) case and in the three-dimensional case.
The types of auxiliary sources that might prove well-suited in
these cases are transverse magnetic line currents and crossed
Hertzian dipoles, respectively. An analysis of the sensitivity of
the method to noise in the measurement data is also needed.
It will be highly relevant to adapt the method to applications
with further reduced measurement data, e.g., where only the
scattering intensity is given. The minimisation of the bound-
ary condition error was here done for simplicity by ’brute
force,’ that is, by simply evaluating the quantity at a large
number of points along the y axis. This consumed most of
the total execution time, so implementing a faster minimisa-
tion scheme could significantly improve the efficiency of the
overall inversion. The plots of the reconstructed near fields
show not only the position of the top of the wire, but also in-
dicate the shape of the illuminated part of the scatterer. This
motivates the use of the presented forward scattering model
in shape reconstruction of particles (on substrates) with com-
plex morphologies described by multiple parameters, where
the use of look-up tables can be impractical due to the large
size of the tables. We expect improved quality of reconstruc-
tion if scattered far-field data are given for more than one an-
gle of illumination or operating frequency. Instead of using the

PEC approximation for highly conductive penetrable scatter-
ers on substrates, better inversion accuracy might be achieved
if the original transmission problem is approximated by an
exterior impedance boundary value problem (see Colton and
Kress [2, Section 9.5]). Finally, our choice of the simple far-
field approximation of the half-plane Green’s function regu-
larised the inverse problem somewhat and, with the forward
model used here, improved the accuracy of the inversion. It is
of great interest to further investigate regularisation schemes
that would diminish the distortion in the reconstructed near
field. Here, the concrete setup of the inverse problem as well
as the forward model should be taken into account.
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