
J O U R N A L  O F

T

O

R

T H E  E U R O P E A N  

O P T I C A L  S O C I E T Y

R A PID  PU B LIC AT IO N S

Journal of the European Optical Society - Rapid Publications 6, 11031 (2011) www.jeos.org

Analytical expressions for diffraction-free beams
through an opaque disk

Qiulin Huang School of Electronic Engineering, Xidian University, Xi’an, 710071,China

Sebastien Coëtmellec Département d’optique, CNRS UMR-6614 CORIA, Av. de l’Université, 76801 Saint-Etienne du Rouvray
cedex, France

Fabrice Duval IRSEEM, ESIGELEC, Avenue de l’Universite, 76801 Saint-Etienne du Rouvray, France

Anne Louis IRSEEM, ESIGELEC, Avenue de l’Universite, 76801 Saint-Etienne du Rouvray, France

Herve Leblond LφA, EA4464 , 2 Bd Lavoisier, Université d’Angers, 49045 Angers cedex 01, France

Marc Brunel
marc.brunel@coria.fr

Département d’optique, CNRS UMR-6614 CORIA, Av. de l’Université, 76801 Saint-Etienne du Rouvray
cedex, France

We establish analytical expressions that demonstrate that the beam produced after diffraction of a gaussian beam by an opaque disk and
collimation by a lens can be approached by a diffraction-free J0 Bessel function. We further demonstrate that a similar analytical expression
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1 INTRODUCTION

Diffraction-free beams have attracted much attention since pi-
oneer work of Durnin and co-workers [1]. Different beam-
shaping techniques exist. Most well-known are based on the
use of an annular aperture [1, 2], a computer generated-
hologram [3] or an axicon [4]. Although an annular aperture
induces many losses, the technique based on this element has
recovered much interest in view of recent studies involving
sub-wavelength apertures [5]. They could indeed allow the
design of systems in sub-wavelength optics.

We have recently proposed another method based on the oc-
cultation of an incident beam. We could indeed demonstrate
that diffraction of a Gaussian beam by an opaque disk leads
to the generation of a diverging Bessel’like beam, that can
then be collimated with a lens into a diffraction-compensated
beam [6]. The simplicity of the method allows its application
directly at the output of a pigtailed laser diode [7]. Numeri-
cal developments associated to comparisons with experimen-
tal results could validate these results. They showed that the
beam diffracted by the opaque disk can be expressed as a sum
of approximately 20 Bessel functions of odd orders. Unfor-
tunately, these expressions are so complex that they do not
allow to establish any simple expression of the diffraction-
compensated beam after the collimating lens. Numerical inte-
gration is required to obtain correct simulations. In this case,
collimation by the lens is expressed numerically using a phase
factor and a Fresnel transform. Any optimization of an experi-
mental set-up requires thus complex numerical integration, in
particular to adapt the technique to other domains of wave-

length (as in the microwave domain). In addition, with the
present formulation, the process appears as a compensation
of diffraction between different "orders", and not as the gener-
ation of a diffraction-free J0 Bessel beam. This method could
however present much interest in the next future in view of
recent techniques developed in subwavelength optics [5], and
combined to intracavity designs [8].

We have thus pursued our study and we present now a sim-
plest formulation that establishes a simplified approached ex-
pression of the diffraction’free beam that is generated. After
some simplifications that are detailed expressly, the beam is
shown to be well approached by a zeroth-order diffraction-
free Bessel function. This expression can then be generalized
to the case of 100 fs incident pulses. The present paper is orga-
nized as follows. In section 2 we establish a new expression of
the field diffracted by an opaque disk, assuming an incident
Gaussian beam. Results are compared with experimental re-
sults and our previous theoretical developments [6]. The do-
main of validity of this new approach is discussed. In section
3, collimation by the lens is considered and an expression is es-
tablished that takes into account the phase factor introduced
by the lens, the lens and propagation in free space after the
lens. Under assumptions that are discussed, this expression
can be much simplified and the beam that is finally obtained
is shown to be a non-diffracting zeroth-order Bessel function.
Based on these previous developments, we establish then in
section 4 an analytical expression of the diffraction-free beam
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produced when the incident Continuous Wave (CW) laser is
replaced by a femtosecond laser.

2 A paraxial solution for the
diffract ion of a CW beam by an
opaque disk

2.1 Theoretical development

Let us consider the set-up presented in figure 1. A Gaussian
beam is focused in the vicinity of an opaque disk. The propa-
gation axis is the z−axis. xq, yq and zq denote the coordinates
in the plane where the opaque disk is located. xq and yq are
the transverse coordinates. x, y and z are the coordinates in the
plane where the diffracted electric field is calculated (z > zq).
The scalar field of the Gaussian beam over the plane where
the opaque disk is located is written as

FIG. 1 Experimental set-up. The opaque disk is on the focus point of the lens L2
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where k = 2π/λ represents the wave number and λ is the
wavelength. The waist and the radius of curvature along the
propagation axis z are given by:
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where z0 = πω2
0/λ represents the Rayleigh length of the

beam, ω0 its width at the waist. The origin position z = 0 cor-
responds to the position of the beam waist between the two
lens L1 and L2 (see figure 1). Some previous developments
have been done to describe this phenomenon and they are
detailed in reference [6]. We present here a new formulation
that leads to simplified approached expressions. According to

the paraxial approximation, we get the following formula that
represents the distribution of scalar field [9],
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The integral is calculated on the plane where the opaque disk
is located. Let us note xq = ρq cos ϕ, yq = ρq sin ϕ and
x = ρ cos θ, y = ρ sin θ. Then:
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which gives noting ρq = Dγ/2 with γ ∈ [1,+∞[:
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Thus:
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Here, we use the method of integration by parts and the fol-
lowing property of Bessel functions:

d
wdw

(
Jν(w)

wv

)
= − Jν+1(w)

wν+1 (9)
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the integral in equation (8) can be represented as the series of
Bessel functions, i.e.:
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Using an asymptotic expression of Jm(X) for large values of m,
it can be shown that the series converges. However, for mod-
erate values of m (due to the truncation of the series which is
done numerically in practice), Jm(X) decreases quite slowly
with m, and hence the accurateness of the series (10) is mea-
sured by the convergence condition for the series :
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i.e. by
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which gives:
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Then the following paraxial solution is obtained:
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2.2 First-order approximation

Equation (14) can be simplified since it can be well represented
only by the zeroth-order Bessel function in paraxial approxi-
mation. So, we get

u(x, y, zc) =−
iπD2exp(ik(zc − zq))

2λ(zc − zq)

× exp
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) (15)

with ρ2 =
√

x2 + y2. Figure 2 shows the comparison between
an experimental profile, and the previous expansion consid-
ering only the coefficient m = 0 (first-order approximation).
For these experimental results, the laser source is a CW He-Ne
laser emitting at 632.8 nm. Beam filtering is ensured by focus-
ing the laser beam with a microscope objective through a pin-
hole. The filtered diverging beam, which is a quasi-gaussian
beam, is then focused with a 2 cm-large lens L1 whose focal
length is 10 cm. Focusing occurs 15 cm after the lens L1. The
diameter of the focus point is 70 µ m at 1/e. An opaque disk
whose diameter is 300 µ m is positioned just before the focus
point. It is well centered on the optical axis of the experiment,
but 3.5 mm behind the focus point. The diffracted pattern is
the one observed with a CCD camera positioned 10.5 cm after
the opaque disk. We can see that the first-order approximation
using only a J0 Bessel function allows a good fit of experimen-
tal results.
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FIG. 2 Comparison of an experimental profile and the first order approximation using

a J0 Bessel function.

Figure 3 shows some comparisons using our old development
with 20 Bessel functions of odd orders (see reference [6]), and
the new development with 1, 2 or 8 functions. The parame-
ters are those of the experiment. In the case of the J0 approx-
imation (limitation of the new expansion to the first order),
the profiles obtained are in good accordance for the central
peak and the 3 first concentric rings. Some slight difference
concerning the value of the other ring’s radius occurs but it
does never exceed 2.2 %. The new expansion with 2 Bessel
functions agrees well with old expansion for the central peak
and the 4 first concentric rings. The intensity of the following
rings is then slightly overestimated while there is not any er-
ror concerning their radius. The new expansion over 8 Bessel
functions fits very well the old expansion for the central peak
and the 9 first rings. The figure is limited to the domain of ac-
curacy of the new truncated expansion expressed previously
ρ < 4|a(z)|(z− zq)/(kD). In this case, the limit is ρ < 2.5 mm.
After this limit, the new truncated expansions diverge (except
the expansion limited to the sole J0 Bessel function).
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FIG. 3 Comparison of old expansion using 20 Bessel functions of odd orders, and

different orders of the new expansion

3 Col l imation of the beam with a
lens

3.1 Theoretical development

Let us now consider focusing by the lens as detailed in figure
1. On the plane z = zc where the collimating lens is located,
the scalar field can be well represented only by the zeroth-
order Bessel function in paraxial approximation. The ampli-
tude of the scalar field on the plane z′ after the collimating
lens L2 can be written as

u(x′, y′, z′) =
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∫ ∫
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where u(x, y, zc) is given by the first-order approximation of
relation (15). It gives:
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In the above formula: x′ = ρ′ cos θ, y′ = ρ′ sin θ. If the opaque

disk is just located on the focus point of the lens L2, that is
fL2 = zc − zq, u(x′, y′, z′) can be written as follows
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−
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3.2 Infinite lens approximation

The previous expression (18) leads to a very simple result
when the radius of the collimating lens L2 tends to infinity.
After integration over variable ϕ and according to references
[10] which give the following expression :
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we obtain:

u(x′, y′, z′) =−
iπD2exp(ik(z′ − zq)− a(zc))
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× exp
(
−i

k(z′ − zc)D2
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J0

(
kρ′D
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The beam generated after the lens can thus be reasonably ex-
pressed as a non-diffracting J0 Bessel beam under a few ap-
proximations. Figure 4 shows some comparison between the
beam patterns predicted 30 cm after the collimating lens (Fig
4a) using the old expansion over 20 Bessel functions of odd
orders accompanied by phase factor of the lens and Fresnel
transform after the collimating lens (see reference [6]), and
the pattern predicted using the first-order J0 Bessel function
approximation (Fig 4b). Figure 5 shows then a comparison
between an experimental profile recorded 1 m after the col-
limating lens. Other parameters are the opaque disk diameter
D = 300 µm, zq = 3.5 mm, and fL2 = 25 mm. Although
the fit is not perfect (which is not so surprising in view of the
assumptions that have been already done), the J0 expression
appears as a relatively good approximation. The expression
derived presently is of course not as precise as our previous
rigorous derivations [6]. It represents however an important
simplification: it allows indeed the simple design of any sys-
tem in any domain of wavelength, without need of long nu-
merical procedures. The rigorous developments of reference
[6] remain however interesting for the proper adjustment of a
system, in the last stage of its realization.
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FIG. 6 Beam profiles recorded 5 cm, 25 cm and 55 cm after the lens L2

Figure 6 shows an example of non-diffracting beam realiza-
tion. In this case, the different parameters are λ = 632.8 nm,
D = 1 mm, fL2 = 6.35 cm, R = 2.5 cm. The figure presents
the patterns recorded 5 cm, 25 cm and 55 cm after the lens L2.
In figures b and c, the camera is deliberately saturated to en-
hance the defaults that appear progressively in the diffraction
patterns: when the propagation distance reaches z = 55cm,
parasitic fringes destroy the central peak. With these condi-
tions (a relatively big value of D and small value of fL2 ), the
dimension of the central peak is relatively small. The experi-
ment has thus been carried out with a specific camera whose
pixel size is as small as 4.6 µm. The diameter of the first dark

ring surrounding the central intense peak is approxi-
mately 13 pixels for all three recorded images, i.e. 60 ± 5 µm.
For comparison, the previous approached relation using the
sole J0 Bessel function gives a diameter of the first dark ring
equal to 62.4 µm. The waist of the central peak (beam radius at
1/e2) is 16 µm ± 5 µm in all three cases. Let us notice that the
Rayleigh length zr = πω2

0/λ of a gaussian beam whose waist
dimension would be ω0 =16 µm is zr = 1.2 mm. The Lmax that
we obtain here (55 cm) is thus 460 times the Rayleigh length
of an equivalent gaussian beam.

4 Femtosecond diffract ion-free
bessel beam

Let us now consider the case of femtosecond pulses. As the
femtosecond pulses exhibit a large spectrum, the previous
model cannot be used anymore. Diffraction of ultrashort fem-
tosecond pulses has received much attention in the last years
and different effects have been evidenced such as spectrum
red-shift, pulse time broadening and delay increasing towards
the beam periphery, spectrum blue-shift along the propaga-
tion direction (see for example [11]). However, these effects
become really significant when considering few-cycle pulses.
As our pulse duration is relatively long (100 fs), these ef-
fects remain low. We consider here ultrashort pulsed beams
with constant waist width, extensively used in the literature
[11, 12, 13], under the paraxial approximation. Diffraction is
a linear, isotropic and homogeneous effect. The propagation
of light can be described by a combination of Fresnel diffrac-
tion (for each spectral component) and a temporal filter (for
proper superposition of monochromatic components) [14, 15].
The pulse energy does not exceed a few tens of picojoules,
such that there is no additional nonlinear effect in the sub-
strate of the diffractive element.

In the temporal Fourier domain, we can write:

Ẽ(r, ω) = Ũ(r, ω)G̃(ω) (21)

where Ẽ(r, ω) is the temporal Fourier transform of the
diffracted electric field E(r, t) at position r, at time t. The
function G̃(ω) is the spectrum of the incident pulses. We will
consider the following spectrum:

|G̃(ω)|2 = exp

(
−
(

ω−ω0

∆ω

)2
)

(22)

This expression is of course just an approximation. The defini-
tion of a universal spectrum for femtosecond pulses is not pos-
sible: let us for example cite the wide range of regimes existing
in the case of femtosecond fiber-oscillators (solitonic, gaus-
sian or parabolic pulses...). Simulations show that the shape
of the spectrum is not a fundamental parameter in our case.
The main parameter is indeed the spectrum width (here ∆ω).
Ũ(r, ω) is the complex amplitude diffracted by the disk in the
case of a perfectly monochromatic plane wave of frequency
ω. In the absence of the collimating lens L2, its expression, at
distance z after the disk on point r = (ρ, z) (in cylindrical co-
ordinates), is directly deduced from the analysis developed
previously.
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By using the Parseval theorem, we can calculate the diffraction
intensity with the following formula:

I(ρ, z) =
C

16(z− zq)2 exp
(
− D2

2w(zq)2

)
×
∫ +∞

−∞
|Ũ(r, ω)|2|G̃(ω)|2dω

(23)

where C is a constant of normalization. Previous relation gives
the expression:

I(ρ, z) =
Cw(zq)4

16(z− zq)2 exp
(
− D2

2w(zq)2

)
×
∫ +∞

−∞

1
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(
−
(

ω−ω0

∆ω

)2
)

× J2
0 (αω)dω

(24)

with τ =
w(zq)2

2c

(
1

z−zq
− 1

R(zq)

)
and α = ρD

2c(z−zq)
.

To best of our knowledge, this integral cannot be computed
analytically. The typical values of the different parameters are
α ∼ 10−14s, τ ∼ 10−16s, ω0 ∼ 3000 THz, ∆ω ∼ 30 THz.
Introducing the new variable x = (ω−ω0)/∆ω, it is possible
to make a Taylor-type limited development versus parameter
∆ω that is much smaller than ω0 of function

1
1 + τ2(ω0 + ∆ωx)2 exp

(
−x2

)
J2
0 (α(ω0 + ∆ωx)) (25)

Integration is then possible. The fourth-order development
gives for example the following relation:

∫ +∞

−∞

∆ω

1 + τ2(ω0 + ∆ωx)2 exp
(
−x2

)
× J2

0 (α(ω0 + ∆ωx))dx

=
∆ω
√

π J2
0 (αω0)

1 + τ2ω2
0

+
(∆ω)3√π

2ω0(1 + τ2ω2
0)

3

×
(
−ω0(τ

2 − 3τ4ω2
0 + α2(1 + τ2ω2

0)
2)J0(αω0)

2
)

+
(∆ω)3√π

2ω0(1 + τ2ω2
0)

3

×
(

α(1 + 6τ2ω2
0 + 5τ4ω4

0)J0(αω0)J1(αω0)

+ α2ω0(1 + τ2ω2
0)

2 J1(αω0)
2
)
+ O(∆ω)5

(26)

Figure 7 shows the intensity profiles predicted using first-
order, third-order and fifth-order Taylor-type developments.
It appears clearly that the first-order development is sufficient
to simulate the intensity profile diffracted by the opaque disk.
In other words, in the case of 100 fs pulses, the pulse spec-
trum is not sufficiently large to affect significantly the parax-
ial Bessel beam. All developments give similar results in the
paraxial domain where the J0 Bessel beam approximation was
justified.

Assuming now an infinite dimension for the collimating lens,
it is possible to express the electric field after the lens L2 (in the
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FIG. 7 Intensity profiles predicted in the case of 100 fs pulses using 1st-order, 3rd-order,

5th-order Taylor-type developments

case zc − zq = fL2 ). The scalar field distribution in the Fourier
domain is given by:

Ũ(ρ′, z′; ω) =−
iπD2 exp(iω(z′ − zq)/c− a(zc))

4λa(zc)(zc − zq)

× exp
(
−i

ω(z′ − zc)D2

8c(zc − zq)2

)
× J0

(
ωρ′D

2c(zc − zq)

)
G̃(ω)

(27)

Noting β = ρ′D/(2c(zc − zq)), we obtain finally after some
computation:

I(ρ′, z′) =
Cw(zq)4

16(zc − zq)2 exp
(
− D2

2w(zq)2

)
×
∫ +∞

−∞

1
1 + τ2ω2 exp

(
−
(

ω−ω0

∆ω

)2
)

× J2
0 (βω)dω

(28)
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FIG. 8 Beam pattern observed 116 cm after the lens L2 in the case of 100-fs pulses

(left); experimental and theoretical fit using a 1st-order Taylor-type development

(right) (camera: 11 µm per pixel)

This expression is similar to relation (24) replacing z by zc, and
α by β. As the typical orders of magnitude of parameters α and
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β are quite the same, the previous procedure can be done, and
it is easily demonstrated that the field intensity is now given
approximately by :

I(ρ′, z′) =
Cw(zq)4

16(zc − zq)2 exp
(
− D2

2w(zq)2

)
×

∆ω
√

π J2
0 (βω0)

1 + τ2ω2
0

(29)

This expression is of course only valid in the paraxial do-
main, and for 100 fs pulses whose optical spectrum is not too
large. In this domain of validity, expression (29) shows how-
ever clearly the diffraction-free nature of the beam because pa-
rameter β does not depend on the propagation distance after
the lens z′.

Figure 8 shows the experimental pattern observed 116 cm af-
ter the collimating lens, in the case of 100 fs incident pulses
emitted by a Ti:Sa laser. The diameter of the opaque disk is
700 µm. We have zq = 4.5 cm and fL2 = 25 cm. Unfortu-
nately this laser is subject to important astigmatism which
disturbs strongly the beam. Beam intensities along the x-axis
and y-axis are indeed very different and astigmatism is well
known to modify Bessel-beam patterns. It is however pos-
sible to fit relatively well the experimental beam profile us-
ing the approached relation (29). In conclusion, the expression
(29) represents a very important simplification of our previ-
ous numerical developments [15] which required long calcu-
lus times. It allows now the simple optimization of systems.

5 Conclusion

Diffraction of a gaussian beam by an opaque disk has been re-
visited. We could establish analytical expressions that demon-
strate that the beam obtained after collimation by a lens can be
well approached by a diffraction-free J0 Bessel function. We
have further demonstrated that a similar analytical expres-
sion can be established in the case of femtosecond incident
pulses. Those simple analytical relations allow the design of
systems in different wavelength regions, while very long com-
puting times were necessary using previous numerical devel-
opments. This is a very important feature for us, particularly
for further designs of systems in the microwave regime.
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