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The spectral properties of one-dimensional multilayer structures for the two polarizations TE and TM are investigated and a physical
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1 INTRODUCTION

As first noted by Pendry [1], the evanescent waves restoring
by an ideal negative index material (NIM) layer can lead to
subwavelength resolution below the Rayleigh limit. This the-
oretical prediction was later confirmed by experiments car-
ried out using a flat lens composed of a single silver layer
40-50 nm thick [2], [3]. This theory generally requires that the
thickness of the metal film (about 5 nm) should be very small
compared to the wavelength of the input signal. In fact, unlike
an ideal, lossless NIM, which can amplify evanescent waves,
silver can only slow down the rate of decay of the evanes-
cent components: in terms of energy flow, the propagation is
always characterized by losses. The source is thus generally
placed very near to the flat metal lens, typically within λ0/5-
λ0/10, where λ0 is the incident wavelength. At such small dis-
tances, sub-wavelength resolution can also be obtained with
near-field scanning optical microscopy [4], [5]. More recently,
a new scheme was proposed to increase the distance where
super resolution can still be observed [6]. Pendry et al. [7]–[9]
have considered a multilayer structure that improves super-
resolution in the near-field zone relative to the single metal
layer. The structure consisted of eight periods of alternating
metal and air layers that were assumed to have equal thick-
ness (5 nm each). The incident wavelength was chosen in
a way that the real parts of the permittivity would nearly
balance each other, namely ε = 1 for air, and ε ∼ −1 for
silver. Excluding losses, these conditions are approximately
satisfied for ultraviolet light in the range between 345 and
360 nm, slightly below the plasma frequency of silver (λp ∼
320 nm). Although the layered structure displayed improved
resolving capabilities, the overall transmittance of propagat-
ing modes was nearly identical to the transmittance from a
single metal layer 40 nm thick, as originally proposed in [1].
One obvious drawback in the new system was the much re-
duced metal layer thickness, down to about 5 nm or so, which
from a technological point of view is still quite a challenge
to achieve. Another scheme that achieves super-resolution in

metal-dielectric structures was recently proposed [10], [11]
based on thick alternating layers arranged to produce a res-
onant structure, in a regime where effective medium theory
is not applicable (in this scheme the thickness of the layers,
about 40 nm, are not thin enough compared to the wavelength
to allow the use of the effective medium approximation, as
was done by Pendry for his thin structures). The structure in
this case may not transmit evanescent waves and the main
underlying physical mechanisms for sub-wavelength focus-
ing are resonance tunnelling, field localization and propaga-
tion effects [11]. One important property is its spatial trans-
mission spectrum. In the present paper we perform a study
of multilayered structures that are able to exhibit super res-
olution: we demonstrate that this property is well related to
the cavity properties of the structure and that it can involve
every kind of 1D multilayer for every input field polarization.
By properly choosing the geometry and the refractive index of
the layers super resolution can be achieved. In the next Section
we present a general discussion of the spatial transmission
of unidimensional multilayers and its connection to super-
resolution. Section 3 considers the possibility to improve reso-
lution, and the final Section 4 presents some design criteria to
optimize the structure for super-resolution. Conclusions close
the paper.

2 SPECTRAL PROPERTIES

Before starting to investigate super resolution in a 1D mul-
tilayer structures and the physical explanation of this phe-
nomenon, we want to discuss about some properties of the
Fourier transform and of the transfer function of a linear sys-
tem made by a one-dimensional photonic band gap (PBG)
sample. Between the input Vi(kx) and the output field Vo(kx)

in the transformation domain where kx is the wavevector
component in the x direction which is normal to structure axis
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FIG. 1 Experimental and simulation results for (a) 100 µm emitter and detector anten-

nas on LT-GaAs and (b) 200 µm emitter and detector antennas on LT-GaAs.

there is the relation Vo(kx) = TPBG(kx)Vi(kx), where TPBG(kx)

is the transfer function of the linear system. If we want the
output and the input field to be equal, we need the modulus
of the function TPBG(kx) to be constant for the entire spectral
range of the input signal Vi(kx) while the phase must be con-
stant depending on the kx variable for the same range of space
frequencies. It is clear however that it is impossible to have a
constant value for the TPBG(kx) function for any real kx values
[12]; there is indeed the spectral component having kx/k0 = 1
(k0 = 2π/λ) and corresponding to a 90 degrees input where
for any linear system we have without ambiguity TPBG = 0;
the spectral range corresponding to |kx/k0| > 1 is related to
evanescent waves, and every real system has a transmission
whose modulus is strongly different from zero only for a fi-
nite range of kx. The better case of a transfer function that is
able to perform a perfect reproduction of the input field at the
output window is presented in Figure 1, where m is the max-
imum spatial frequency that the structure is able to transmit.
If now we neglect the two points kx/k0 = ±1 (that are just
two missed points in the spectrum, that gives no changing in
the space domain) and the two peaks at ±α which will be dis-
cussed later, we can assume that the function better reproduc-
ing the input field without effective changes is rectangularly
shaped, 2 m in size and centred in the origin of the kx axis;
for the phase we suppose to have constant value in the en-
tire range of the spectrum. If the input signal has a spectrum
completely inside the rectangle, then the output reproduces
exactly the shape of the field, whereas if Vi(kx) has an exten-
sion larger than the rectangle, the output signal looses the fi-
nesse of the input field at the high kx frequencies which are
cut by the transfer function of the linear system. This case is
exactly what happens in the reality, where the transfer func-
tion of any PBG structure cuts the higher spatial frequencies.
It is obvious that for fixed input signal the larger is the rectan-
gle |TPBG(kx)| the better will be the reproduction of the input
signal. In the case of a PBG structure, it is necessary to find
a geometry which has the closest transfer function to the one
of Figure 1 as well and possibly with the largest rectangular
base. Now we want to discuss a special transfer function that
often approximates the transfer function of many 1D super
resolving PBGs: it is the one represented in Figure 1 in which
two peaks at some values of kx/k0, say ±α are shown. Let us
first assume that these two peaks are two Dirac-δ functions
of area Tδ centred in the symmetric points kx/k0 = +α and
kx/k0 = −α respectively, with α > 1 . The transfer function,
disregarding the zero values at kx/k0 = ±1, can be described
analytically as

TPBG(kx) = rect2mk0(kx)+ Tδδ(kx− αk0)+ Tδδ(kx + αk0), (1)

where rectT(kx) is the rectangle function with base T, centred
in the origin. The output field is

V0(kx) = TPBG(kx)Vi(kx)

= rect2mk0(kx)Vi(kx) + Vi(αkx)Tδδ(kx − αk0)

+ Vi(−αkx)Tδδ(kx + αk0). (2)

Writing Vi(αk0) = |V|eiΦ and making the inverse Fourier
transformation of Eq. (2), we obtain

v0(x) = =−1{rect2mk0(kx)Vi(kx)}

+ |V|eiΦTδeiαk0x + |V|e−iΦTδe−iαk0x, (3)

that in a more compact way can be written as

v0(x) = =−1{rect2mk0(kx)Vi(kx)}
+ 2|V|Tδ cos(Φ + αk0x). (4)

Eq. (4) describes the electromagnetic field on the output sur-
face of the PBG. It is the sum of two terms, the first one is the
inverse Fourier transformation of the input field after cutting
the high spatial frequencies (|kx/k0| > m), the second one rep-
resents an added disturb in the form of a spatial cosine at high
frequency (evanescent zone because α > 1). The field of Eq. (4)
must propagate in the free space on the right of the PBG, and
the evanescent frequencies drop down quickly, so the cosine
is strong near the output surface of the PBG and in the x di-
rection parallel to its face, but it drops down as well as the
field propagates in the longitudinal direction: in the far field it
no more survives leaving only the propagating field without
evanescent components. Many 1D multilayer systems have a
transfer function that may be approximated with the one de-
scribed and usually with more pairs of Dirac − δ′s. We will
see in fact that these frequencies are strictly linked to the ge-
ometry of the system and have no dependence from the input
field. These particular spatial frequencies generate at the out-
put, cosine terms that disturb the process of super resolving.
In the following we will give more details about the physi-
cal mechanism that gives rise to these peaks in the evanescent
spectrum of many PBGs. A better and more realistic situation,
especially if absorption is present is the one in which the struc-
ture present spectra similar to the one we have discussed but
with peaks of finite high and width as shown in Figure 1. The
mathematical analysis is similar to the one we have done and
the field at the output has two terms, as in Eq. (4),

v0(x) = =−1{rect2mk0(kx)Vi(kx)}
+ [S(x) cos(αk0x)] · vi(x). (5)

The first term is still the inverse Fourier transformation of
the input electromagnetic field after cutting high spatial fre-
quencies with |kx/k0| > m (this term takes into account the
loss of high spatial frequencies). The second term is a convo-
lution between the cosines with a function S(x) (that is the
Fourier transform of the peaks at ±α shown in the figure)
which is due to the finite sizes of the peaks and gives an os-
cillatory symmetric function that decays with increasing |x|.
In this case too, the peaks add a disturb to the output sig-
nal but now span only for a limited extension on the x axis.
If for example as input signal we use a rectangular function
along x then the output field, due to the first term in Eq. (5)
will still be almost rectangular (the high spatial frequencies
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FIG. 2 Special case of a metal-dielectric PBG with five layers, the two metal layers

are filled by silver while the three dielectric ones are without absorption and with

refractive index nd = 4.
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FIG. 3 Plot of the transmission and reflection spectra.

are cut from the transfer function) superposed with a func-
tion that oscillates from the origin reducing as |x| increases.
This is what happens on the output surface. If we consider
the propagation of the field in the z direction, all the evanes-
cent oscillatory components decay very soon leaving just the
propagating field. It is clear from this discussion that the more
are the peaks the more is the disturb at the output. We show
now an example taking into account a particular PBG. In Fig-
ure 2 a metal-dielectric PBG with five layers is shown (two
filled by metal and three with dielectric), the metal is silver
while the dielectric is without absorption and with refractive
index nd = 4. The wavelength is λ = 0.600 µm and for the sil-
ver we take nAg = 0.1243 + i3.7316. The polarization is TM.
The thickness of all the layers is 20 nm, so the whole PBG
is thick 100 nm. The transmission and reflection spectra are
shown in Figure 3 while the phase is shown in Figure 4. The
transmission spectrum has a finite band-width extending ap-
proximately from−6 to +6 kx/k0 with three broaden maxima:
one in the real zone between |kx/k0| < 1 and two symmet-
ric around kx/k0 = ±2. The phase is almost constant in the
evanescent zone |kx/k0| > 1 as it should be in order to repro-
duce a perfect copy of the input signal. Usually this kind of
phase, almost constant in the spectral range of a large band,
occurs quite regularly in the systems we are studying.
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FIG. 4 Plot of the transmission and reflection spectra.

FIG. 5 A lossless and no dispersive metal-dielectric PBG with five layers.

3 IS IT POSSIBLE TO ENLARGE THE kx
SPECTRUM?

In this Section we want to give a physical explanation of the
broad peaks as the ones shown in Figure 3, that are typically
present in multilayer structures in the evanescent zone: they
may be associated to the presence of real modes propagat-
ing in the direction parallel to the multilayer planes. We start
studying an ideal case, and after we will extend our results to
real cases.Without loss of generality we may consider the PBG
plotted in Figure 5. The polarization is TM. The multilayer can
be seen in the z direction as an open resonator, in which some
modes exist. The mathematical analysis to find the modes fol-
lows exactly the one used in optical guides in which light
propagates in the x direction; the guides indeed in the trans-
verse direction are resonators. From the study of the modes in-
side the guide [13] we can find the dispersion curves that link
the modes to the couple of values kx and λ. The dispersion
curve for the system of Figure 5 is shown in Figure 6 (it ap-
pears discretized just due to the representation technique). In
this example, below λ = 0.5 µm there are no more dispersion
curves. In Figure 6 we analyze only the window kx/k0 > 1
because the modes must be evanescent outside the PBG [13].
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FIG. 6 Dispersion curve for the system of Figure 5.

FIG. 7 Angular transmission for the system of Figure 5.

If we excite the PBG with a plane wave, at λ = 0.5 µm with
a generic kx (red dashed line in Figure 6), we are not able to
exactly excite any mode but, because we are very close to the
resonant dispersive curve at λ = 0.52 µm with kx/k0 ' 2 , the
field inside the resonator may grow somehow and with it the
evanescent tails outside the multilayer will grow. In Figure 7
we show the angular transmission for λ = 0.5 µm while in
Figure 8 we plot the phase that appear constant for the large
range of the spectrum. For the range of values kx/k0 that are
closer to the dispersion curve, say 1 < kx/k0 < 3 , there is
a very broad transmission without peaks (there are no peaks
because we are not exactly exciting modes at λ = 0.52 µm). If
we now select the wavelength at λ = 0.65 µm (green dashed
line in Figure 6) we should have a broad transmission inside
the range 2 < kx/k0 < 5 while a mode at kx/k0 ' 8 (that
is the interSection between the green dashed line and the dis-
persion curve) could be stimulated which generates a peak
in the spectrum exactly at this value (see Figure 8). We have
only to underline that the peaks are not very high just because
computing discretization was low, but here because we have
no absorption and the mode is stimulated we should have an
infinite amplitude peaks. In Figure 9 we plot the dispersion
curve for the system of Figure 5 but for TE polarization. In
this case for every wavelength there is at least one kx value
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FIG. 8 Phase for the system of Figure 5 at λ = 0.5 µm.

FIG. 9 Angular transmission for the system of Figure 5 at λ = 0.65 µm.

that intersect the wavelength line we are working with; so it is
impossible in this case to generate a simple broadening of the
band without peaks in the spectrum. In Figure 10 we show the
case where λ = 0.600 µm. We have a peak at kx/k0 ' 1.3 that
is exactly the interSection between the dashed red line and the
dispersion curve of Figure 9. Let now consider the same struc-
ture of Figure 5 in which now the two layers with n = i4 are
substituted with two metal layers with n = 1 + i4. We choose
a high real value just to test the goodness of the theory. Af-
ter we will study a realistic metal-dielectric multilayer made
with silver. The polarization is TM. If we analyze the disper-
sion curve we obtain the curve of Figure 11. Before proceeding
further, we have to explain how it was obtained and which are
the differences with the dispersion curve of the previous sys-
tem. From the theory of a wave guide [13] described by a 2× 2
transmission matrix, we know that to find the guided modes it
is necessary that the element m22(kx, λ) of this matrix satisfies
the relation

m22(kx, λ) = 0. (6)

From Eq. (6) it is possible to find all possible modes that
can travel inside the guide. For the lossless case Eq. (6) has
roots just because there are modes that can survive for an in-
finite time inside the cavity of the waveguide, but if losses are
present Eq. (6) cannot be satisfied (inside the cavity there are
no modes that can survive for an infinite time). In this case
the function m22(kx, λ) can just be close to zero but without
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FIG. 10 Dispersion curve for the system of Figure 5.

FIG. 11 Angular transmission for the system of Figure 5 at λ = 0.6 µm.

reaching it. The case of absence of roots for Eq. (6) is exactly
the situation of the PBG with losses, the real modes do not
exist anymore but there are points of resonance (the minima
of the function |m22(kx, λ)|) where we can increase the field
inside the cavity at values much higher than the input. In Fig-
ure 11 we plotted all the minima of the function |m22(kx, λ)|.
It is clear that the larger are the losses of the system the

more distant are the minima from zero and the weaker are
the corresponding resonances. In Figure 12 we plot the angu-
lar transmission at λ = 0.6 µm. In this case the dashed line
at λ = 0.6 µm in Figure 11 intersect the dispersion curve but
as we can see from Figure 12 the transmission grows keep-
ing it limited and generating a smoothed peak exactly in the
interSection point (λ = 0.6 µm, kx/k0 = 1.28). This limited
and smoothed peak at interSection is due to the fact we are
no more in presence of a real mode but just of a resonance,
where the losses limit the field amplitude inside and outside
the cavity. In Figure 13 the dispersion curve for the same sys-
tem is plotted for TE polarization. In this case too we always
intersect the dispersion curves, but here too due to losses we
have a broadening enlarging the transmission spectrum with-
out peaks. This is seen in Figure 14 in which the transfer func-
tion for λ = 0.6 µm is plotted. A band with the maximum at

FIG. 12 Dispersion curve for the system of Figure 5 substituting the materials n = i4

with others having n = 1 + i4.

FIG. 13 Angular transmission for the system of Figure 5 at we substituted the materials

n = i4 with others having n = 1 + i4.

kx/k0 ' 1.21) that corresponds to the interSection between the
dashed line with the dispersion curve, Figure 13 is seen. The
conclusion is that the broad peaks that appear in the spatial
spectrum of the multilayer structure for |kx/k0| > 1 corre-
spond to the evanescent tail of transverse wave propagating
parallel to the multilayer planes which can be excited from
outside.

4 DESIGN RULES FOR LARGE BAND PBG

In this Section we want to discuss some ideas for designing
metal-dielectric 1D-PBG with large band and good transmis-
sion over the entire spectral range. We analyze for the moment
only symmetric systems, we chose a multilayer structure with
alternating metal and dielectric layers with the following se-
quence DMDMDMDMDMDMD where D is a dielectric and
M is a metal, all the dielectric layers are equal, all the metal
layers are equal too, in input and output of the structure we
have the vacuum. All the dielectric layers have the same thick-
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FIG. 14 Dispersion curve for the system of Figure 5 substituting the materials n = i4

with others having n = 1 + i4.

FIG. 15 Angular transmission for the system of Figure 5 at λ = 0.6 µm, we substituted

the refractive index of the metal n = i4 with n = 1 + i4.

ness dd and refractive index nd, all the metal layers have the
same thickness dm and refractive index nm while the polariza-
tion is TM. In the analysis we have to search a geometry that is
able to enlarge the band without generating peaks in the spec-
trum. First we fix the wavelength at the value λ0 where the
dielectric refractive index and the imaginary part of the metal
refractive index are equal (or in any case very close to each
other), so we need that

nd(λ0) = Im{nm(λ0)} (7)

and we choose a metal where the real part of the refractive
index is very low with respect to the imaginary one,

Re{nm(λ0)} << Im{nm(λ0)}. (8)

An ideal metal for which Re{nm(λ0)} = 0 would be the best
choice, but if the real part of the metal refractive index is very
low compared with the imaginary one, all the discussion in
the following is still valid. The reasons for these choices will
be explained later. Now we apply Eqs. (7) and (8) to a real
case. We choose λ = 388 nm , in this region the silver has a
refractive index nm = 0.1824 + i1.8164 . Therefore we choose
a dielectric with refractive index around 1.8 at λ = 388 nm.
We choose six silver and seven dielectric layers to build our

FIG. 16 Angular transmission spectrum for the metal-dielectric system at λ = 388 nm,

nd = 1.8 and a) dd = dm = 60 nm, b) dd = dm = 30 nm, c) dd = dm = 20 nm, d)

dd = dm = 15 nm.

PBG. To start with we fix all the thicknesses of the layers equal
to each other and rather large, for example we can start with
dd = dm = 60 nm and then we decrease the thickness of the
layers to see which is their influence on the transmission spec-
trum. Several cases are shown in Figure 16, which shows the
angular spectrum for different values of the thickness. We see
that, with the large thickness we have chosen to start with,
the angular spectrum of the system is regular (without reso-
nances), narrow and with a very low transmission value (Fig-
ure 16(a)). Reducing the thickness of the layers, the spectrum
starts to open. For dd = dm = 30 nm (Figure 16(b)) and
dd = dm = 20 nm (Figure 16(c)), the spectrum is rather broad-
ened. For dd = dm = 15 nm (Figure 16(d)) we see that the
modulus of the propagating waves reaches a maximum value
of about 15% in transmission while the evanescent compo-
nents still grow. For smaller thicknesses we increase the res-
onances of the evanescent field but the transmission spectrum
is no more uniform. So we may decide to stop the thickness
of the layer at about 20 nm just diversifying a little bit the
thickness of the metal from the dielectric to find a more uni-
form transmission. We choose 18 nm for the dielectrics and
20 nm for the metal and finally we have the spectrum of Fig-
ure 17(a) which has a low modulus but a spectral width larger
than kx/k0 = 4. In Figure 17(b) the dispersion curve is plot-
ted. The dashed line (λ = 388 nm ) intersect the curve at
about kx/k0 = 2 where there is the maximum of the trans-
mission, the peaks are not infinite just because there is the
absorption of the silver. Now we show how important is to
have the condition (8) well verified. We modify the refractive
index of the silver to nm = 0 + i1.8164 . The spectrum of Fig-
ure 17(a) modifies in the one of Figure 18(a) showing a very
large width which demonstrates that this system with ideal
metal and symmetric geometry is able to avoid the resonance
peaks and to super resolve a signal large at minimum 1/10
of the wavelength. The good behavior of the phase is shown
in Figure 18(d). From this example we see that it is not im-
portant to have a very large refractive index for the dielectric
to have a large band in the spectrum but it is important that
Eqs. (7) and (8) are well verified. In Figure 18(b) the disper-
sion curves are plotted and one of them is tangent to the line
λ = 388 nm (dashed line); just because the discretization is

11004- 6



Journal of the European Optical Society - Rapid Publications 6, 11004 (2011) A. Mandatori, et. al.

FIG. 17 a) angular transmission spectrum for the metal-dielectric system where

dd = 18 nm, dm = 20 nm, nd = 1.8, λ = 388 nm. b) dispersion curve.

FIG. 18 a) angular transmission spectrum d) phase spectrum, for the metal-dielectric

system where dd = 18 nm, dm = 20 nm, nd = 1.8, nm = 0 + i1.8164 , λ = 388 nm.

b) dispersion curve. c) dispersion curves calculated for different values of the real

part of the silver refractive index: Pink: nAg = 0.1824, Red: nAg = 0.1500, Green:

nAg = 0.1000, Blue: nAg = 0.0500 where kAg is always 1.8164.

low the dispersion curve up to the line λ = 388 nm is plotted
with a few points and the tangent curve appears broken, but
it is continue. In Figure 18(c) the dispersion curves are plot-
ted always for the same system but changing the real part of
the silver refractive index. We can see that just for completely
absence of absorption (Figure 18(b)) the dispersion curve is
tangent to the line λ = 388 nm , for all other cases we can-
not avoid the interSection with almost one dispersion curve.
This characteristic is completely general, when absorption is
present, it is never possible to avoid the interSection between
the line λ = const and the dispersion curves. We analyzed
many others structures using different types of systems, both
symmetric or non-symmetric, and also studying all-dielectric
PBGs. We observed that in the case of all-dielectric systems
the polarization that better works to broaden the band is TE
while usually for TM there are strong peaks close to the points
kx/k0 = ±1 . In the case of all-dielectric PBG the maximum
width we may have in the band is given from the maximum
refractive index difference between the layers. Moreover we
may have a nearly uniform spectrum just if we have some
losses, the interSection between λ = const and the dispersive
curves are indeed impossible to avoid in any case.

5 CONCLUSIONS

From the presented discussion one may infer that the super
resolution for thick multilayer system is a phenomenon that
can be completely explained as a resonant effect. It is due to
the resonances inside the PBG which in the propagation direc-
tion may be seen as an open cavity. Considering the resonator
representation with the resonant points, we may explain why
there are often strong peaks in the angular spectrum and only
in the evanescent zone; we may also easily explain the phe-
nomenon of the uniform band broadening, linking it to the
dispersion curves and the quasi resonant regimes inside the
PBG cavity. We also showed that it could be possible to ob-
tain large bands for both TE and TM polarization. The all-
dielectric 1D multilayer structure although in principle could
work needs more investigation to be done in a further work.
We demonstrated that to have very large bands it is neces-
sary to respect as better as it is possible the conditions 7 and 8,
without having very large refractive index in the layers. The
phase behavior of all the studied systems keeps almost con-
stant in the range of interest which assures a good response.
There is only a discontinuity at kx/k0 = 1 and a jump from the
region |kx/k0| ≤ 1 and |kx/k0| > 1 which can be accounted
for in the reconstruction process.
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