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1 INTRODUCTION

In this brief review we first describe the beginning and ne-
cessity of introducing quantum theory of coherence for deal-
ing with low-intensity optical beams created in 1963 and give
some contributions to this field obtained at the Palacký Uni-
versity in Olomouc in the following period. In particular we
show results obtained for arbitrary multimode field opera-
tor orderings and quantum-state reconstructions on the basis
of quantum moment problem. Further we introduce the so-
called generalized superposition of signal and quantum noise
generalizing the classical superposition of signal and noise (of
coherent and chaotic fields) describing nonclassical states in
terms of negative quantum noise. Attention is also devoted to
the quantum Zeno effect and to nonlinear optical couplers as
effective sources of nonclassical light. Strong theoretical and
experimental effort directed to parametric down-conversion
provided a number of points of view on nonclassical behavior
of light generated in this process, including a description in
terms of joint wave distributions exhibiting quantum oscilla-
tions and negative values.

2 CREATION OF QUANTUM THEORY OF
COHERENCE

Classical theory of coherence was systematically developed
by many authors in relation to interference patterns in clas-
sical interferometers and it is called the second-order theory
because it involves the second-order correlations in field am-
plitudes. Such a theory started in papers by P. H. van Cittert
and F. Zernike and was systematically worked out by E. Wolf
(a review can be found in classical book [1] by M. Born and E.
Wolf). When Hanbury Brown and Twiss extended the inter-
ferometric measurements to include intensity correlations, i.e.
the fourth-order amplitude correlations, it was still possible
to formulate the corresponding theory in classical terms (for a
review, e.g. [2]) treating natural (chaotic) sources. However,
with development of other sources than chaotic (Gaussian)
ones, in particular with development of lasers, it was neces-
sary to build a general theory of coherence, involving correla-

tions of all orders, which can uniquely be determined from the
second-order correlations for Gaussian fields only. This was
done in about 1964–1969 [3]–[5]]. However, any application
of this theory, mostly in optical imaging, needs strong opti-
cal fields in which quantum noise plays no role. When weak
quantum fields are involved, quantum electrodynamics must
be applied. This was done for the first time by R. J. Glauber in
1963 [6, 7] (Nobel Price in 2005) adopting the so-called coher-
ent states |α〉 introduced by E. Schrödinger in 1927 [8]. These
states represent some opposite states to Fock (number) states
(definite photon numbers, uncertain phase), describing fields
with fluctuating photon numbers and definite complex am-
plitudes, which is necessary for description of coherence as a
cooperative boson phenomenon. This is just the beginning of
the quantum theory of coherence. The most important step in
this development was to express the density matrix in terms
of the coherent states,

ρ̂ =
∫

P(α)|α〉〈α|d2α, (1)

which represents a superposition of density matrices for co-
herent states weighted by the function P(α); the integral is
taken over the complex plane. It is now called the Glauber-
Sudarshan diagonal representation of the density matrix. For
natural chaotic fields this function is Gaussian and both the
classical and quantum descriptions are fully equivalent math-
ematically and physically as well. Using this representation
also all quantum correlation functions measured by photode-
tectors (normally ordered-all creation operators are to the
left of all annihilation operators) can formally be expressed
in a “classical” form, which led to a formulation of the so-
called equivalence theorem. This caused a discussion espe-
cially among L. Mandel and E. Wolf and R. J. Glauber about
the meaning of this theorem (see also discussions in [3]). It was
successively clear that this equivalence is generally only for-
mal and it is valid only if the weighting function P behaves as
classical distribution function (it is regular and non-negative).
However, in general it is expressed in terms of the Fock den-
sity matrix elements as double series of derivatives of the δ
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function, it can take on negative values and be very singular
(it is the so-called generalized function-ultradistribution) [9].
Then a formal mathematical equivalence does not mean the
physical equivalence and such unusual mathematical prop-
erties of distribution functions reflect just quantum physical
properties of optical fields having no classical analogue. This
opened a large field for applications of the process of para-
metric frequency down-conversion to theoretical and experi-
mental studies of quantum properties of light, development
of quantum homodyne tomography and reconstructions of
quantum states and creation of new directions in quantum
transmission, processing and recording information. Owing
to efforts of many working places over the world the meth-
ods of quantum optics were applied for proving the validity
of quantum principles, for description of propagation of light
in random and nonlinear media, and for generating nonclas-
sical fields, in particular in nonlinear optical processes, use-
ful in practical applications, such as quantum cryptography,
very precise quantum measurements (for example in efforts to
detect gravitational waves), quantum information, quantum
teleportation, quantum computing, etc. One of the first mono-
graphs giving the classical and quantum theory of coherence
and their relations was published in 1972 [2].

It should be mentioned that the first summer school devoted
to creation of quantum optics was organized in 1969 by R. M.
Sillito and P. Farago at Carberry Tower close to Edinburgh
[10]. It was possible to meet many important people in this
field there: R. J. Glauber, A. Kastler, N. Bloembergen, A. L.
Shawlow, H. Haken, T. W. B. Kibble, W. H. Louisell, E. R. Pike,
G. W. Series, G. Toraldo di Francia, L. Mandel, D. F. Walls, F.
Haake, R. Graham, and T. Hänsch among others.

3 ORDERING OF FIELD OPERATORS AND
RECONSTRUCTION OF QUANTUM
STATES

Fundamental works in this field were published by Agarwal
and Wolf [11, 12, 13] and Cahill and Glauber [14, 15]. We dis-
cuss here the nontrivial multimode generalization leading to
the generalized photodetection equation and interesting in-
verse problem for determination of wave properties of radi-
ation from photocount measurements [2] (Chapter 16 and ref-
erences therein).

Describing an M-mode field by the number operator n̂ =
∑λ â†

λ âλ and the corresponding wave integrated intensity
W = ∑λ |αλ|2 (αλ being the complex amplitude in the mode
λ corresponding to the photon annihilation operator âλ), we
can derive the following relation between the s-ordered and
number generating functions

〈exp(iyn̂)〉s = [1− (1− s)iy/2)]−M
〈[

1 + (1 + s)iy/2
1− (1− s)iy/2

]n〉
,

(2)
where iy is a parameter of the generating function, or we
can obtain the relation between s1- and s2-ordered generat-
ing functions (s equals 1, 0 and −1 for normal, symmetric and

antinormal orderings, respectively)

〈exp(iyn̂)〉s2 = [1 + (s2 − s1)iy/2]−M

×
〈

exp
[

iyn̂
1 + (s2 − s1)iy/2

]〉
s1

. (3)

In particular from Eq. (2) we can derive the generalized pho-
todetection equation [16, 17] relating the photon number dis-
tribution p(n) and quasidistribution P(W, s) of the integrated
intensity W related to s-ordering

p(n) =
1

Γ(n + M)

(
2

1 + s

)M ( s− 1
s + 1

)n

×
∫ ∞

0
P(W, s)LM−1

n

(
4W

1− s2

)
exp

(
− 2W

1 + s

)
dW,

(4)

where LM−1
n is the Laguerre polynomial (in the Morse-

Feshbach normalization) and Γ is the Gamma function. In
the limit s → 1 for the normal operator ordering related to
photodetection, we obtain the standard Mandel photodetec-
tion equation as the average of the Poisson kernel. Excepting
a number of particular cases, we can give general relations
between integrated intensities for two orderings and for their
moments

P(W, s2) =
2

s1 − s2

∫ ∞

0

(
W
W ′

) (M−1)
2

exp
[
−2(W + W ′)

s1 − s2

]
× IM−1

(
4
(WW ′)1/2

s1 − s2

)
P(W ′, s1)dW ′, (5)

where Re[s1] > Re[s2], IM−1 is the modified Bessel function,
and

〈Wk〉s2 =
k!

Γ(k + M)

(
s1 − s2

2

)k 〈
LM−1

k

(
2W

s2 − s1

)〉
s1

. (6)

It is worth noting that this formulation provides a basis for
solving various inverse problems, e.g. to determine P(W, s)
from the photocount measurements giving p(n). We can ob-
tain, e.g., for normal ordering

PN (W) = exp[−(ζ − 1)W]
∞

∑
j=0

cjL0
j (ζW), (7)

where

cj = ζ
j

∑
s=0

p(s)
(−ζ)s

(j− s)! s!
(8)

or more generally for M-mode systems

PN (W) = WM−1
∞

∑
j=0

cjLM−1
j (W), (9)

where

cj =
j!

Γ(j + M)

j

∑
s=0

(−1)s p(s)
(j− s)! Γ(s + M)

. (10)

These reconstruction formulae have the advantage that they
can be used to reconstruct approximate quasidistributions
from a finite number of measurements and also they pro-
vide some regularized forms of quasidistributions (when also
phase should be included, a basis {αλLλ

n(|α|2)} for a field
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complex amplitude α can be used, which is orthogonal with
the weight exp(−|α|2)).

The above formulae are able to reconstruct also the nonclassi-
cal behavior of the quasidistribution, e.g. its negative values,
as applied, for instance, by Klyshko [18]. This can be done
by defining a set of “moments” Mn = p(n)n! and quadratic
forms

qm =
m

∑
j,k=0

Mj+kujuk (11)

for an arbitrary nontrivial real vector {uj} and m = 0, 1, ....
If qm are larger than zero for every m, then it is possible to
construct the non-negative distribution PN (W) from a given
sequence of moments Mn in a unique way. However, if for
some m this quadratic form equals zero, there exists a unique
quasidistribution the support of which is composed of a finite
number of points equal to the minimal number of the m’s for
which the form equals zero. This criterion can be expressed
in terms of determinants Dm = Det[Mj+m], j = 0, 1, ..., m, be-
cause if these determinants are positive, then also the forms
are positive [19] (Section 3.8).

4 GENERALIZED SUPERPOSITION OF
SIGNAL AND QUANTUM NOISE

The above formalism can be applied for obtaining multimode
superposition of coherent signal and noise, giving a gener-
alization of the well-known Mandel-Rice formula and per-
mitting a quantum generalization. Assuming a rectangular
broad-band spectrum of noise, the M-mode (temporal, spatial
and polarization) generating function is the generating func-
tion for the Laguerre polynomials LM−1

n (a polarized superpo-
sition is assumed),

〈exp(isW)〉N =
(

1− is
〈nch〉

M

)−M
exp

[
is〈nc〉

1− is 〈nch〉
M

]
, (12)

where is is the parameter of the generating function, and 〈nc〉
and 〈nch〉 are the mean number of coherent signal and the
mean number of chaotic noise photons, respectively [19] (Sec-
tion 5.3 and references therein).

The corresponding distribution of the integrated intensity W
is expressed in terms of modified Bessel functions,

PN (W) =
M
〈nch〉

(
W
〈nc〉

)(M−1)/2
exp

(
−W + 〈nc〉
〈nch〉

M
)

× IM−1

(
2M

[〈nc〉W]1/2

〈nch〉

)
, for W ≥ 0, (13a)

= 0, for W < 0. (13b)

For the photon-number distribution we have

p(n) =
1

Γ(n + M)

(
1 +
〈nch〉

M

)−M (
1 +

M
〈nch〉

)−n

× exp
(
− 〈nc〉M
〈nch〉+ M

)
× LM−1

n

(
− 〈nc〉M2

〈nch〉(〈nch〉+ M)

)
. (14)

The corresponding factorial moments are

〈Wk〉N =
k!

Γ(k + M)

(
〈nch〉

M

)k
LM−1

k

(
−〈nc〉M
〈nch〉

)
. (15)

In special cases we obtain expressions for fully coherent or
fully chaotic light, e.g. Poisson or Mandel-Rice distributions.

For nonlinear two photon processes (sub-harmonic genera-
tion) these formulae can be generalized so that they can de-
scribe nonclassical effects. The generating function “splits” as
follows

〈exp(isW)〉N = [1− is(E− 1)]−M/2[1− is(F− 1)]−M/2

× exp
[

isA1

1− is(E− 1)
+

isA2

1− is(F− 1)

]
, (16)

where E = B − |C|, F = B + |C| represent quantum noise,
B = 〈∆â†∆â〉 and C = 〈(∆â)2〉 represent phase indepen-
dent and phase dependent amplitude fluctuations, respec-
tively, number 1 subtracted from E, or F represents the sub-
traction of vacuum fluctuations in the normal operator order-
ing and A1,2 are signal components

A1,2 =
1
2

[
M

∑
j=1
|ξ j(t)|2 ∓ 1

2|C|

(
C∗

M

∑
j=1

ξ2
j (t) + c.c.

)]
, (17)

where ξ j(t) are time developed complex amplitudes and c.c.
denotes the complex conjugate terms. For example, for the de-
generate optical parametric process with strong classical co-
herent pumping we obtain

B = cosh2(gt), (18a)

C =
i
2

sinh(2gt) exp(iφ), (18b)

E− 1 =
1
2
[exp(−2gt)− 1] ≤ 0, (18c)

F− 1 =
1
2
[exp(2gt)− 1] ≥ 0, (18d)

A1,2 =
1
2
|ξ|2 exp(∓2gt)[1∓ sin(2θ − φ)] ≥ 0, (18e)

where g is a nonlinear coupling constant proportional to the
quadratic susceptibility and pumping real amplitude, φ is the
pump phase and θ is the initial phase of the signal. We see
that the quantum noise component E − 1 is negative for all
times and we have a superposition of a signal with nega-
tive quantum noise. If the initial phases are suitably related,
e.g. 2θ − φ = −π/2, the first factor in the generating func-
tion (Eq. (16)) involving A1 and E− 1 is dominating and the
photon distribution reduces to sub-Poissonian distribution for
short times (the normal wave variance 〈(∆W)2〉N is nega-
tive). For later times oscillations in photon number distribu-
tion p(n) occur having no classical analogue. The photon-
number distribution and its factorial moments are expressed
in terms of the Laguerre polynomials as follows

p(n) =
1

(EF)M/2

(
1− 1

F

)n
exp

(
−A1

E
− A2

F

)
×

n

∑
k=0

1
Γ(k + M/2)Γ(n− k + M/2)

(
1− 1/E
1− 1/F

)k

× LM/2−1
k

(
− A1

E(E− 1)

)
LM/2−1

n−k

(
− A2

F(F− 1)

)
,

(19)
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〈Wk〉 = k!(F− 1)k
k

∑
l=0

1
Γ(l + M/2)Γ(k− l + M/2)

(
E− 1
F− 1

)l

× LM/2−1
l

(
− A1

E− 1

)
LM/2−1

k−l

(
− A2

F− 1

)
. (20)

Denoting p1(n) and p2(n) as partial distributions related to
factors containing A1, E and A2, F, respectively, the resulting
distribution is a discrete convolution,

p(n) =
n

∑
k=0

p1(n− k)p2(k). (21)

In the above case of phase relations, the partial distribution p1
is oscillating and takes on negative values whereas the par-
tial distribution p2 is geometric and nonnegative. As a result
of the discrete convolution of Eq. (21), a nonnegative photon-
number distribution arises with quantum oscillations.

Thus we have a generalization of the classical superposition
of signal and noise extending it to negative quantum noise
components, which makes it possible to include nonclassical
effects. For difference-number distributions further general-
izations including complex noise are possible (see, e.g., [33]).

5 QUANTUM ZENO EFFECT

The quantum Zeno effect refers to the inhibition of the isolated
temporal evolution of a dynamical system when the observa-
tion of such evolution is attempted (see a review [20]). This
observation is usually described by frequent measurements
on the system performed in order to discover whether the ini-
tial system has changed or not. In the limit of very frequent
measurements, continuous observation, or arbitrary high res-
olution, it may happen that the system is locked on its initial
state and the evolution, which is the aim of the observation,
is in fact inhibited and does not occur. The effect was demon-
strated using atomic transitions, neutron spin dynamics, etc.
We have demonstrated it using nonlinear effects of paramet-
ric down-conversion and Raman scattering [21]–[23].

We can consider a nonlinear crystal of length L which is
pumped by a strong, classical and coherent field to produce
pairs of signal and idler photons via spontaneous parametric
down-conversion. Using the interaction picture, this interac-
tion is described by the effective Hamiltonian

Ĥ = h̄g(â†
s â†

i + âs âi), (22)

where âs and âi are the slowly varying annihilation operators
for signal and idler beams respectively, and g is a coupling
parameter depending on the pump field and the quadratic
susceptibility of the medium. We have also assumed the fre-
quency resonance condition ωp = ωs + ωi, where ωp, ωs and
ωi are the frequencies of the pump, signal and idler beams, re-
spectively. We will denote by τ the interaction time associated
with the length L of the crystal. We focus on the generation of
the signal from the vacuum. The interaction Hamiltonian, to-
gether with the standard quantum lossy mechanism [19], pro-
duce after the interaction time τ the following general relation

between the output operator â′s for the signal field and the in-
put signal and idler operators âs and âi:

â′s = µâs + νâ†
i + L̂s, (23)

where

µ = exp(−γsτ/2) cosh(gτ), (24a)

ν = −i exp(−γsτ/2) sinh(gτ), (24b)

L̂s = ∑
l

wsl b̂sl (25)

is an operator related to the Langevin force for signal losses
and it holds that

∑
l
|wsl |2 = 1− exp(−γsτ); (26)

here b̂sl are initial reservoir operators, γs is a signal damp-
ing coefficient and we have neglected rotating reservoir terms,
which give negligible contribution in the optical region.

Now we assume that the crystal is divided into N equal parts
of length ∆L = L/N, with associated interaction time ∆τ =
τ/N within each part. We can assume that the signal beams
of each part are perfectly superimposed and aligned, and that
reflection at each piece can be avoided or made negligible, for
instance, embedding the N pieces in a linear medium with
the same refractive index. On the other hand, the idler path is
interrupted after each piece by means of mirrors, for instance.
The output idler beams after each piece are removed from the
idler path being replaced by new idler beams which are in
vacuum. This modification makes it possible to observe the N
output idler beams to detect the emission when it occurs, for
instance, by means of N photodetectors. Then, the moment of
emission can be inferred with accuracy ∆τ, and the relative
resolution is given by the number of pieces ∆τ/τ = 1/N. All
losses related to various imperfections can be included in the
lossy reservoirs.

Now we can examine the influence of this arrangement on
the single-photon emission. The signal output operator after
N pieces reads

â′sN = µN âs1 +
N

∑
k=1

µN−kνâ†
ik +

1− µN

1− µ
L̂sN , (27)

where the coefficients (24) are considered for ∆τ. Now the
probability to have one signal photon is given by

〈â′†sN â′sN〉vac = N(g∆τ)2 + N2〈nrsN〉γs∆τ (28a)

=
(gτ)2

N
+ 〈nrs〉γsτ, (28b)

where we have considered g∆τ � 1, γs,i∆τ � 1 so that
µ ' 1, ν ' −ig∆τ, ∑l |wsl |2 ' γs∆τ, 〈nrs〉 are mean numbers
of reservoir oscillators, which are negligibly small in the opti-
cal region for room temperatures, and also signal beam is ini-
tially in vacuum. We have two terms here, the first one arises
from nonlinear dynamics, the second one from the signal lossy
mechanism. The first term exhibits the quantum Zeno effect
because no signal photons are radiated if the accuracy of the
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observation is increased by increasing N. In the limit of N
tending to infinity the probability of signal photon emission
tends to zero and there is no emission at all. We can note that
whether the attempted measurement on the idler modes is ac-
tually made or not appears to make no difference. It is suffi-
cient that it could be made. In general the losses in the signal
beam degrade the quantum Zeno effect. This lossy effect is
nonlocal because the measurement on the idler beam reduces
the Zeno effect in the signal beam through its losses.

We see that for unobserved system the N emitters are stim-
ulated by the same vacuum, imparting phase correlations be-
tween them. On the observed system the pieces are influenced
by different and statistically independent vacuum fields lead-
ing to mutually incoherent emissions. This refers rather to the
idler beam. However, through the strong quantum nonlocal
correlations also signal beam is controlled. Alternatively, the
probability of emission on the unobserved system can be con-
sidered as the constructive interference between N possible
and intrinsically indistinguishable ways for the emission to
occur. When we interrupt the idler path N times, these ways
become distinguishable by the possible detection of the idler
photon. This possibility wipes out the interference, and the
emission is modified. In the optical region for room tempera-
tures the obtained lossy effects in the signal beam are not crit-
ical for observation, Nmax being of about 1020.

If also phase mismatch in the nonlinear process is taken into
account, the signal photon emission can be supported and
the anti-Zeno effect may arise [22, 24] in which signal pho-
ton emission is increased by the measurement. The above ar-
rangement can be modified using Kerr effect [21]. The influ-
ence of losses is similar.

6 NONLINEAR OPTICAL COUPLERS

The above results were continued by systematic studies of
propagation of radiation in random and nonlinear media [25]
and of evolution of quantum statistics in nonlinear optical
processes [19, 26, 27]. Much effort has been devoted to study
quantum statistical properties of nonlinear optical couplers
composed of two or three linear and nonlinear waveguides
connected by evanescent waves [28, 29] used for generation
and propagation of nonclassical light. Nonlinear waveguides
operating by degenerate as well as nondegenerate optical
parametric processes, by Raman scattering or Brillouin scat-
tering and Kerr effect, and also a bandgap coupler were con-
sidered. Squeezing of vacuum fluctuations, sub-Poissonian
photon behavior, collapses and revivals of quantum oscilla-
tions and properties of quantum phase were examined in sin-
gle and compound modes in fully quantum way in short-
length approximations or in parametric approximation of
strong coherent pumping. In some cases symbolic compu-
tations to obtain higher-order fully quantum solutions were
applied. Both regimes of codirectional and contradirectional
propagation were considered. Also substituting schemes and
stability problems were investigated.

Such composed nonlinear devices can be applied not only
as sources for generation and propagation of light exhibit-

ing nonclassical properties and as switching devices, but also
as elements for quantum measurements using linear waveg-
uide as a continuous probe device [30] and for investigation of
quantum coherence [31]. The most comprehensive review of
aspects of quantum propagation of light beams can be found
in a publication [32].

7 JOINT DISTRIBUTIONS IN OPTICAL
PARAMETRIC DOWN-CONVERSION

We begin with the standard two-mode description of para-
metric down-conversion described by the interaction Hamil-
tonian

Ĥint = −h̄gâ1 â2 exp(iωt− iφ) + h.c., (29)

where â1 (â†
1) and â2 (â†

2) represent annihilation (creation) op-
erators of signal and idler beams, respectively, g is a real cou-
pling constant proportional to the quadratic susceptibility χ(2)

and the real amplitude of pumping |ξ|, t is interaction time,
ω = ω1 + ω2 is the pumping frequency, ω1 and ω2 are the
signal and idler frequencies, respectively, φ is the pumping
phase and h.c. means the Hermitian conjugate term. The well-
known solutions in the interaction picture are

â1(t) = â1(0)u(t) + iâ†
2(0)v(t) exp(iφ), (30a)

â2(t) = â2(0)u(t) + iâ†
1(0)v(t) exp(iφ), (30b)

where u(t) = cosh(gt), v(t) = sinh(gt) and functions
exp(−iωjt), j = 1, 2 are omitted in the interaction picture.
Losses and noise are usually described in the standard quan-
tum consistent way assuming that both the modes are cou-
pled to large Gaussian-Markovian reservoir systems (see, e.g.,
[19], Chapter 7). In this case the field amplitudes are damped
(losses) and additional contributions are obtained from reser-
voir Langevin forces (noise). Now we can use the normal
quantum characteristic function

CN (β1, β2, t) = Tr
{

ρ̂ exp(β1 â†
1(t) + β2 â†

2(t))

× exp(−β∗1 â1(t)− β∗2 â2(t))
}

, (31)

which is obtained, using the above solutions, in the Gaussian
form [19]

CN (β1, β2) = exp
[
−|β1|2B1 − |β2|2B2 + D12β∗1β∗2 + D∗12β1β2

]
(32)

where β1, β2 are parameters of the characteristic function;
we assume the spontaneous process without loss of gener-
ality [33]. In this ideal case the quantum noise functions are
B1 = 〈∆â†

1∆â1〉 = B2 = 〈∆â†
2∆â2〉 = B = sinh2(gt), D12 =

〈∆â1∆â2〉 = (i/2) sinh(2gt) exp(iφ). Hence the squeeze pa-
rameter is r = gt. When determining the Glauber-Sudarshan
quasidistribution as a Fourier transform of the correspond-
ing characteristic function [19, 26, 34]–[36], the determinant
K = B2 − |D12|2 = − sinh2(gt) < 0 is involved in the calcu-
lation and its negative value causes that this quasidistribution
does not exist for all times and consequently the signal and
idler beams are entangled for all times (see a discussion be-
low Eq. (37)).
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Now if losses and noise are to be included, we can assume
reservoirs in interaction with the radiation modes and elimi-
nating the reservoir variables in the framework of the Heisen-
berg or Schrödinger approach in the standard way, we obtain
[19, 36, 37] for the time-dependent noise functions B1 = B2 =
B and D12

B =
1
2
(a1 + a2)− 1, (33a)

D12 =
i
2

exp(−iωt + iφ)(a2 − a1), (33b)

K = a1a2 − a1 − a2 + 1 = (a1 − 1)(a2 − 1), (33c)

a1 =
κ1

κ3
[1− exp(−κ3t)] + exp(−κ3t), (33d)

a2 =
κ2

κ4
[1− exp(κ4t)] + exp(κ4t), (33e)

κ1,2 = g± γ(〈nd〉+ 1), (33f)

κ3,4 = 2g± γ, (33g)

γ and 〈nd〉 being damping constant and mean number of
reservoir oscillators in one mode. We obtain for K

K =
g2 − γ2〈nd〉2

4g2 − γ2 [1− exp(−2gt− γt)]

× [1− exp(2gt− γt)] < 0 (34)

for all times provided that g > γ/2, g > γ〈nd〉, i.e. above the
threshold of the process. We see that K can be negative also be-
low the threshold g < γ/2 if 0 ≤ 〈nd〉 < 1/2. This also holds
at the threshold γ = 2g. On the other hand, the noise func-
tions B1, B2, D12 can be obtained directly from experimental
data [33, 38]–[40].

Using this result we can calculate quasidistributions, gener-
ating functions, photon-number distributions and integrated-
intensity wave distributions [38]–[40] exhibiting nonclassical
behavior, which is equivalent to quantum entanglement [40].
This is clear when applying the Simon condition for separa-
bility [41] giving K(K + 2B + 1) ≥ 0, which is violated in this
case (from the positivity of photon-number distributions it al-
ways holds the quantum Schwarz inequality K + B ≥ 0). In
fact K + 2B + 1 (in general K + B1 + B2 + 1) is the determi-
nant for antinormal ordering, KA = (B1 + 1)(B2 + 1)− |D12|2,
which is always positive. The above formulation can easily be
extended to M degrees of freedom (temporal, spatial and po-
larization) [33, 38, 39] in the spirit of Mandel-Rice formula.

We can also consider stimulated process with initial Gaussian
field in the signal and idler modes with the mean number of
noise photons 〈nch1〉 and 〈nch2〉 [42]. When performing the av-
eraging with Gaussian distributions, we obtain the character-
istic function (32) with the new coefficients

B
′
j = Bjz + 〈nchj〉, j = 1, 2, (35a)

D
′
12 = D12z, (35b)

K′ = Kz2 + z(B1〈nch2〉+ B2〈nch1〉) + 〈nch1〉〈nch2〉. (35c)

where z = 1 + 〈nch1〉+ 〈nch2〉.

Usually the characteristic function (32) in a single mode of
photon pairs is formulated in a matrix form with the help of

the complex matrix

Â =


−B1 0 0 D12

0 −B1 D∗12 0
0 D12 −B2 0

D∗12 0 0 −B2

 (36)

and a column vector β̂ = (β1, β∗1, β2, β∗2)
T (T means transposi-

tion) and Hermitian conjugated row vector β̂† as CN (β̂) =
exp(β̂† Âβ̂/2). Considerations of separability and entangle-
ment are just based on this matrix [41]. However, we see that
the matrix Â is reducible to the matrix

B̂ =
(
−B1 D12
D∗12 −B2

)
, (37)

giving the characteristic function in the form CN (β̂) =
exp(β̂† B̂β̂) with column vector β̂ = (β1, β∗2)

T just with the
determinant K = B1B2 − |D12|2 (the degenerate version
provides one-mode case with rotating terms specified by a
coefficient C instead of D12, then K = B2 − |C|2 [19]; also a
three-mode case [42, 43] can be treated in a matrix form in this
way and these two cases are physically the most important).
It holds that Det[Â] = K2. The determinant K determines
the existence or non-existence of the Glauber-Sudarshan
quasidistribution [19] and the behavior of the generating
function [33, 38] leading to classical or quantum behavior
of the integrated-intensity wave distributions. Therefore the
nonclassicality and entanglement [41] condition K < 0 is the
principal one and all other conditions, often algebraically
very complicated, are its consequences in this case. The
same is valid having a classical behavior and separability
given by K ≥ 0. The generating function is then determined
by Det[B̂λ], where B̂λ is the matrix B̂ with B1,2 substituted
by B1,2 + 1/λ1,2, λ1,2 being parameters of the generating
function [33, 38]. The Simon condition for separability [41]
is then written as discussed above as KKA ≥ 0. For all this
the complex formulation is of the great advantage. This is
valid for any s-operator ordering since for the s-entanglement
Ks(Ks + B1s + B2s + 1) < 0, where Ks = B1sB2s − |D12|2
with B1,2s = B1,2 + (1− s)/2. It holds that Ks > K, Bjs > Bj
and consequently Ks + B1s + B2s + 1 > KA > 0 and s
entanglement occurs for Ks < 0, s-separability for Ks > 0 and
Ks = 0 characterizes a diagonal wave distribution related to
the s-ordering.

For M equally behaved modes (temporal, spatial and polar-
ization in the spirit of Mandel-Rice formula) we obtain the s-
ordered generating function

Gs(λ1, λ2) = (1 + λ1B1s + λ2B2s + λ1λ2Ks)−M. (38)

Moments of the integrated intensities can be directly derived
from moments of the photon numbers:

〈Wi〉 = 〈ni〉, (39a)

〈W2
i 〉 = 〈n2

i 〉 − 〈ni〉, i = 1, 2, (39b)

〈W1W2〉 = 〈n1n2〉. (39c)

Multi-mode theory of down-conversion developed in [33] us-
ing a generalized superposition of signal and noise provides
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the following relations between the above mentioned experi-
mental quantities and quantum noise coefficients B1, B2, D12,
and the number of degrees of freedom M:

〈Wj〉 = MBj, j = 1, 2; (40a)

〈(∆Wj)2〉 = MB2
j , j = 1, 2; (40b)

〈∆W1∆W2〉 = M|D12|2. (40c)

The coefficient Bj gives mean number of photons in mode j, M
is the number of modes, and D12 characterizes the mutual cor-
relations between signal and idler fields. Inverting relations in
Eqs. (40) we arrive at the expressions for parameters B1, B2, M,
and D12:

Bj = 〈(∆Wj)2〉/〈Wj〉, j = 1, 2; (41a)

Mj = 〈Wj〉2/〈(∆Wj)2〉, j = 1, 2; (41b)

|D12| =
√
〈∆W1∆W2〉/M. (41c)

As follows from Eqs. (41), the number M of modes can be
determined from experimental data obtained either from the
signal or idler field. This practically means that the experi-
mental data provide two numbers M1 and M2 of modes as
a consequence of non-perfect alignment of the setup and non-
perfect exclusion of noises from the data. On the other hand,
only one number M of modes (number of degrees of free-
dom) appears in the theory [33], because it is assumed that all
pairs of mutually entangled signal- and idler-field modes are
detected at both detectors. Precise fulfillment of this require-
ment can hardly be reached under real experimental condi-
tions. However, quantum consistent experimental data really
give M1 ≈ M2.

Joint signal-idler photon-number distribution p(n1, n2) for
multi-chaotic field with M degrees of freedom and composed
of photon pairs can be derived in the form [38]:

p(n1, n2) =
1

Γ(M)
(B1 + K)n1(B2 + K)n2

(1 + B1 + B2 + K)n1+n2+M

×
min(n1,n2)

∑
r=0

Γ(n1 + n2 + M− r)
r!(n1 − r)!(n2 − r)!

× (−K)r[(1 + B1 + B2 + K)]r

[(B1 + K)(B2 + K)]r
. (42)

The determinant K = B1B2 − |D12|2 is crucial for the judge-
ment of classicality or nonclassicality of a field, as discussed
above. Negative values of the determinant K mean that a
given field cannot be described classically, which is the case of
the considered field composed of photon pairs. In Eq. (42), the
quantities B1 + K and B2 + K cannot be negative and can be
considered as characteristics of fictitious noise present in the
signal and idler fields, respectively. The theory for an ideal
lossless case gives K = −B1 = −B2 together with the joint
photon-number distribution p(n1, n2) in the form of diago-
nal Mandel-Rice distribution. On the other hand inclusion
of losses and external noise results in non-diagonal photon-
number distribution p(n1, n2) as a consequence of the fact that
not all detected photons are paired (see Figure 1).

A compound Mandel-Rice formula gives the joint signal-idler
photon-number distribution p(n1, n2) at the border between

FIG. 1 Joint signal-idler photon-number distribution p(n1, n2) (after [39]).

the classical and nonclassical characters of the field (K = 0):

p(n1, n2) =
Γ(n1 + n2 + M)Bn1

1 Bn2
2

Γ(M)n1! n2! (1 + B1 + B2)n1+n2+M . (43)

If the number M of modes is large compared to mean values
〈n1〉 and 〈n2〉 (i.e. for B1, B2, and |D12| being small) the ex-
pression in Eq. (43) can be approximated by product of two
Poissonian distributions with no correlations between modes.
The joint wave distribution is diagonal in this case.

Deviation from an ideal diagonal distribution p(n1, n2) caused
by losses can be characterized using conditional idler-field
photon-number distribution pc,2(n2; n1) measured under the
condition of detecting n1 signal photons and determined by
the formula:

pc,2(n2; n1) = p(n1, n2)/
∞

∑
k=0

p(n1, k). (44)

Substitution of Eq. (42) into Eq. (44) leads to the conditional
idler-field photon-number distribution pc,2 with Fano factor
Fc,2:

Fc,2(n1) = 1 +
(1 + M/n1)[(B2 + K)/(1 + B1)]2 − (K/B1)2

(1 + M/n1)(B2 + K)/(1 + B1)− K/B1

≈ 1 + K/B1. (45)

Approximate expression for the Fano factor Fc,2 in Eq. (45)
(valid for K ≈ −B2 ) indicates that negative values of the
determinant K are necessary to observe sub-Poissonian con-
ditional photon-number distributions. Sub-Poissonian distri-
bution emerges from Eq. (42), that is a sum of positive terms
in this case. For the ideal lossless case, K = −B1 = −B2, the
Fano factor Fc,2 equals 0. On the other hand, positive values
of the determinant K mean that the sum in Eq. (42) contains
large terms with alternating signs (this may lead to numerical
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errors in summation) and so the conditional distribution pc,2
is super-Poissonian. For instance, for K small compared to B1
we have Fc,2 ≈ 1 + (B2 + K)/(1 + B1).

Pairing of photons in the detected signal and idler fields leads
to narrowing of the distribution p− of the difference n1 − n2
of signal- and idler-field photon numbers:

p−(n) =
∞

∑
n1,n2=0

δn,n1−n2 p(n1, n2), (46)

where δ denotes Kronecker symbol. If the variance of the dif-
ference n1 − n2 of signal- and idler-field photon numbers is
less than the sum of mean photon numbers in the signal and
idler fields we speak of sub-shot-noise correlations and char-
acterize them by a coefficient R [43]:

R =
〈[∆(n1 − n2)]2〉
〈n1〉+ 〈n2〉

< 1. (47)

Joint signal-idler photon-number distribution p(n1, n2) and
joint signal-idler quasi-distribution PN (W1, W2) of integrated
intensities belonging to normally-ordered operators are con-
nected through Mandel’s detection equation [19]

p(n1, n2) =
1

n1! n2!

∫ ∞

0
dW1

∫ ∞

0
dW2 Wn1

1 Wn2
2

× exp(−W1 −W2)PN (W1, W2). (48)

This relation can be generalized to arbitrary ordering of oper-
ators [19, 38] (see Eq. (4)), which can be inverted in terms of
series of Laguerre polynomials similarly as in Section 3 (con-
verging to the distribution described by Eq. (42) just for s ≤ sth
given in Eq. (51), otherwise the relation defines a quasidistri-
bution).

Provided that the s-ordered determinant Ks is positive the s-
ordered joint signal-idler quasi-distribution Ps(W1, W2) of in-
tegrated intensities exists as an ordinary function [38] which
cannot take on negative values:

Ps(W1, W2) =
1

Γ(M)KM
s

(
K2

s W1W2

|D12|2

)(M−1)/2

× exp
[
− (B2sW1/B1s + W2)B1s

Ks

]

× IM−1

(
2

√
|D12|2W1W2

K2
s

)
. (49)

If the s-ordered determinant Ks is negative, the joint signal-
idler quasi-distribution Ps of integrated intensities exists in
general as a generalized function that can take on negative
values or can even have singularities. It can be approximated
by the following formula [38]:

Ps(W1, W2) ≈
A(W1W2)(M−1)/2

πΓ(M)(B1sB2s)M/2 exp
(
− W1

2B1s
− W2

2B2s

)
× sinc

[
A
(

B2s

B1s
W1 −W2

)]
; (50)

sinc(x) = sin(x)/x, A = (−KsB2s/B1s)−1/2. Oscillating
behavior is typical for the quasi-distribution Ps written in
Eq. (50).

There exists a threshold value sth of the ordering parameter s
for given values of parameters B1, B2, and D12 determined by
Ks = 0 (the joint s-ordered wave distribution is diagonal):

sth = 1 + B1 + B2 −
√

(B1 + B2)2 − 4K; (51)

−1 ≤ sth ≤ 1. Quasi-distributions Ps for s ≤ sth are ordi-
nary functions with non-negative values whereas those for
s > sth are generalized functions with negative values and
oscillations.

Similarly as for photon numbers we can define a quasi-
distribution Ps,− of the difference W1−W2 of signal- and idler-
field integrated intensities as a quantity useful for the descrip-
tion of photon pairing:

Ps,−(W) =
∫ ∞

0
dW1

∫ ∞

0
dW2

× δ(W −W1 + W2)Ps(W1, W2). (52)

Quasi-distribution Ps,− oscillates and takes on negative values
as a consequence of pairwise character of the detected fields if
s ≥ sth.

There exists a relation between variances of the difference of n
of signal- and idler-field photon numbers and of the difference
of W of signal- and idler-field integrated intensities:

〈[∆(n1 − n2)]2〉 = 〈n1〉+ 〈n2〉+ 〈[∆(W1 −W2)]2〉. (53)

According to Eq. (53) negative values of the quasi-distribution
Ps,− (as well as these of quasi-distribution Ps) are necessary to
observe sub-shot-noise correlations in signal- and idler-field
photon numbers as described by the condition R < 1.

The above results are given for spontaneous process. Similar
results, however much more complex, can be obtained for pro-
cess stimulated by coherent laser fields [33, 44, 45].

We can now illustrate the above results. The joint signal-idler
photon-number distribution p(n1, n2) determined simply by
Eq. (42) for values of experimental parameters given in [39] is
shown in Figure 1. Strong correlations in signal-field n1 and
idler-field n2 photon numbers are clearly visible. Nonzero el-
ements of the joint photon-number distribution p(n1, n2) are
localized around a line given by the condition n1 ≈ n2 as doc-
umented in contour plot in Figure 1.

Joint signal-idler wave quasi-distributions Ps(W1, W2) of inte-
grated intensities differ qualitatively according to the value of
ordering parameter s (sth = 0.15 for the experimental data)
(after Eqs. (49) and (50)). Nonclassical character of the de-
tected fields is smooth out (Ks = 2.66 > 0) for the value of
s equal to 0.1 as shown in Figure 2(a). On the other hand, the
value of s equal to 0.2 is sufficient to observe quantum features
(Ks = −2.53 < 0) in the joint signal-idler quasi-distribution
Ps(W1, W2) that is plotted in Figure 2(b). In this case oscilla-
tions and negative values occur in the graph of the joint quasi-
distribution Ps(W1, W2).

Similar results can be reported for three-mode parametric pro-
cesses [40].

10048s- 8



Journal of the European Optical Society - Rapid Publications 5, 10048s (2010) J. Perina

(a) (b)

FIG. 2 Joint signal-idler quasi-distributions Ps(W1, W2) of integrated intensities of signal (W1) and idler (W2) fields for s = 0.1 (left) and s = 0.2 (right) (after [39]).

8 NONCLASSICALITY AND
ENTANGLEMENT IN PARAMETRIC
DOWN-CONVERSION

In order to characterize nonclassical behavior (entanglement)
of signal and idler beams, we can use the criteria [46]

(i) K′ = B
′
1B
′
2 − |D

′
12|2 < 0, (54a)

(ii) R =
〈[∆(n1 − n2)]2〉
〈n1〉+ 〈n2〉

= 1 +
〈[∆(W1 −W2)]2〉
〈W1〉+ 〈W2〉

< 1,

(54b)

(iii) S =
〈(n1 − n2)2〉
〈n1〉+ 〈n2〉

= 1 +
〈(W1 −W2)2〉
〈W1〉+ 〈W2〉

< 1. (54c)

Here 〈nj〉 = 〈Wj〉 = B
′
j, 〈(∆Wj)2〉 = B

′2
j , 〈∆W1∆W2〉 = |D′12|2.

For B1 = B2 = B and 〈nch1〉 = n̄1 = 〈nch2〉 = n̄2 = n̄ all these
criteria are equal. Of course the primary is the first criterion,
the second and third ones are derived.

In this way we obtain successively

(i) Kz2 + B1zn̄2 + B2zn̄1 + n̄1n̄2 < 0, (55a)

(ii) 2Kz2 + 2B1zn̄1 + 2B2zn̄2 + n̄2
1

+ n̄2
2 + (B1 − B2)2z2 < 0, (55b)

(iii) Kz2 + 2B1zn̄1 + 2B2zn̄2 − B1zn̄2 − B2zn̄1

+ n̄1n̄2 + (B1 − B2)2z2 + (n̄1 − n̄2)2 < 0, (55c)

and for B1 = B2 = B we obtain

(i) (K + B)(n̄1 + n̄2) + n̄1n̄2/(1 + n̄1 + n̄2) < −K, (56a)

(ii) 2(K + B)(n̄1 + n̄2)

+ (n̄2
1 + n̄2

2)/(1 + n̄1 + n̄2) < −2K, (56b)

(iii) (K + B)(n̄1 + n̄2)

+ [n̄1n̄2 + (n̄1 − n̄2)2]/(1 + n̄1 + n̄2) < −K.
(56c)

In the pure process K = −B we obtain the earlier results [43]

(i) − B(1 + n̄1 + n̄2) + n̄1n̄2 < 0, (57a)

(ii) − 2B(1 + n̄1 + n̄2) + n̄2
1 + n̄2

2 < 0, (57b)

(iii) − B(1 + n̄1 + n̄2) + n̄1n̄2 + (n̄1 − n̄2)2 < 0. (57c)

However, these conditions involving the ideal case K = −B
are particular compared to more general ones given above for
K + B > 0 involving losses and noise. For n̄1 = n̄2 = n̄ all the
conditions of nonclassicality are the same

B >
n̄2

1 + 2n̄
. (58)

If one stimulating field is zero, n̄1 = n̄, n̄2 = 0, then [43]

(i) B(1 + n̄) > 0, (59a)

(ii) B >
n̄2

2(1 + n̄)
, (59b)

(iii) B >
n̄2

(1 + n̄)
. (59c)

The first condition gives no low bound for B and arbitrary
n̄. The relative robustness of nonclassicality with respect to
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the chaotic seed is in agreement with the above result for g >

γ/2, γ〈nd〉. In general, nonclassicality can be supported (K′ <
K) as well as reduced (K′ > K) by injected chaotic field in
dependence on its intensity.

We can illustrate these conditions using Eqs. (33) and (34)
including losses and noise. Effects of Langevin forces even
for reservoir vacuum (〈nd〉 = 0) cause more complicated be-
havior than it is obtained by simple phenomenological de-
scription of losses with the help of the factor exp(−γt), be-
cause K + B > 0 even in pure lossy case without noise
(〈nd〉 = 0) and K = −B holds only for lossless and noiseless
case (γ = 〈nd〉 = 0). Both the descriptions can give the same
results only if γt� 1.

From Eqs. (56) we obtain for n̄1 = n̄2 = n̄

n̄(K + B) + n̄2/2(1 + 2n̄) < −K/2 (60)

for all three conditions, and for n̄1 = n̄, n̄2 = 0 we have suc-
cessively

(i) n̄(K + B) < −K, (61a)

(ii) n̄(K + B) + n̄2/2(1 + n̄) < −K, (61b)

(iii) n̄(K + B) + n̄2/(1 + n̄) < −K. (61c)

Compared to the spontaneous process we have, in general,
bounds of gt for a given n̄.

As shown above the spontaneous process produces nonclassi-
cal and entangled light for all gt provided that g > γ/2, γ〈nd〉.
For the pure process (K = −B) stimulated by means of chaotic
light there is generally low bound for B (gt) to generate such
light for any value of stimulating intensity [43]. If we con-
sider the process stimulated with chaotic light and including
losses and noise (K + B > 0), we see from Figure 3 that we
have again low bound of B (gt) for nonclassical generation.
However, n̄max is saturated and it is decreasing with increas-
ing reservoir noise (〈nd〉) and losses (γ), excepting condition
(61)(i) without noise (Fig 3 (top), curve b), where n̄ can be ar-
bitrary, however, it gives the upper bound for gt if the val-
ues of n̄ are higher than the saturated value for curves b, c, d;
there is no bound and n̄ is arbitrary in the case without losses
and noise. For higher n̄ we have classical behavior. Asymp-
totic values of n̄ are 2(g/γ− 〈nd〉)/(1 + 2〈nd〉) for conditions
(61)(i)–(iii) and one half of this value for the condition (60)
above threshold (Figure 3). This is valid including 〈nd〉 = 0
(the effect of lossy vacuum, different from phenomenological
introduction of losses and not conserving the pure condition
K = −B). In Figure 3 we see the maximum values of n̄ deter-
mining the lowest value of gt from which the field is nonclas-
sical and entangled with noise and losses included (bottom),
excepting the curve b without noise (top), as discussed above.
This is shown successively for conditions (60) and (61). We see
that the determining conditions (60) and (61)(i) are strongest,
the other ones are weaker. In Figure 3 〈nd〉 and γ/g are fixed.

9 CONCLUSIONS

In this review we remember the reasons and beginning for cre-
ation of quantum theory coherence and give some results in

FIG. 3 Conditions (60)(a) and (61)(i)–(iii) (b–d) for nonclassical behavior and entangle-

ment for γ/g = 0.1, 〈nd〉 = 0 (top) and 〈nd〉 = 1 (bottom) (after [46]).

quantum and nonlinear optics using such quantum descrip-
tion. In particular we discuss quantum operator ordering in
relation to reconstruction of quantum states, generalization of
classical superposition of signal and noise to include quan-
tum noise, quantum Zeno effect, applications of quantum op-
tical methods to nonlinear couplers and to optical parametric
processes from the point of view of joint number and wave
distributions and entanglement. A particular attention is paid
to nonclassical properties of optical beams. Some results are
illustrated on the basis of experimental data.

Finally we mention that the Glauber-Sudarshan diagonal rep-
resentation stimulated a number of mathematical investiga-
tions concerning its existence as a generalized function, as re-
viewed in the book [47]. Further the quantum optical tech-
niques were applied to various systems, such as light scatter-
ing systems [48], periodical systems for effective generation of
nonclassical light [49]–[52], etc.
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[32] A. Lukš, and V. Peřinová, Quantum Aspects of Light Propagation
(Springer, New York, 2009).

[33] J. Peřina, and J. Křepelka, “Joint probability distributions of stim-
ulated parametric down-conversion for controllable nonclassical
fluctuations” Opt. Commun. 281, 4705–4711 (2008).

[34] D.F. Walls, and G.J. Milburn, Quantum Optics (Springer, Berlin,
1994).

[35] L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).
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