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Light transmission in inhomogeneous photonic media is strongly influenced by the distribution of the diffractive elements in the medium.
Here it is shown theoretically that, in a pillar photonic crystal structure, light transmission and homogeneity of the pillar distribution
are correlated by a simple linear law once the grade of homogeneity of the photonic structure is measured by the Shannon index, widely
employed in statistics, ecology and information entropy. The statistical analysis shows that the transmission of light in such media depends
linearly from their homogeneity: the more is homogeneous the structure, the more is the light transmitted. With the found linear relationship
it is possible to predict the transmission of light in random photonic structures. The result can be useful for the study of electron transport
in solids, since the similarity with light in photonic media, but also for the engineering of scattering layers for the entrapping of light to be

coupled with photovoltaic devices. [DOI: 10.2971/j€0s.2010.10041]
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1 INTRODUCTION

Propagation of electromagnetic waves in complex and struc-
tured photonic media is a topic of major importance for the
comprehension of some general properties of transport phe-
nomena and for a better understanding of the transport of
electronic in solids owing to well-known analogies between
electronic and photonic transport [1]-[3]. Complex dielectric
structures show variations of the refractive index on a length
scale comparable to the wavelength of light. In ordered struc-
tures, namely in photonic crystals, for a certain range of ener-
gies and certain wave vectors, light is not allowed to propa-
gate through the medium [4]-[6]. This behaviour is very sim-
ilar to the one of electrons in a semiconductor, where en-
ergy gaps arise owing to the periodic crystal potential at the
atomic scale. Photonic crystals are present in nature or can be
fabricated through a wide range of techniques, with the di-
electric periodicity in one, two and three dimensions [7]-[9].
Nowadays, these materials are extensively studied since they
find application in several fields, including photonics for low
threshold laser action, high bending angle waveguide, super-
prism effect, sensors and optical switches [10]-[15]. The opti-
cal properties of photonic crystals, as for example the trans-
mission of light, can be predicted by several efficient mathe-
matical methods [6, 16]-[19], but for less homogeneous struc-
tures these calculations become very cumbersome. For a better
comprehension of the optical properties of such complicated
systems, simple methods that are not time consuming can be
very useful. Recently, concepts and methods widely used in
statistics have been successfully applied to explain light trans-
port phenomena in Lévy glasses [20].
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In this work, we have analyzed the light transmission proper-
ties of two-dimensional photonic media, studied by the use of
a finite element method, and we have demonstrated a simple
scaling law between transmission of light over a wide range of
wavelengths and the distribution of the diffractive elements in
the photonic lattice, the grade of homogeneity of the structure
being quantified by the Shannon index, commonly employed
in statistics and information theory [20]. In particular, we have
shown that the transmission of light increases linearly by in-
creasing the Shannon index, i.e. by increasing the homogene-
ity of the distribution of pillars in the crystals.

2 OUTLINE OF THE METHOD

We consider a well-known structure of two-dimensional pho-
tonic crystal: a square lattice of dielectric circular pillars [6].
The diameter of the column d is set to 75 nm and the lattice
constant a is 300 nm (Figure 1), the pillars are made of Tita-
nium dioxide (nT = 2.45) and the matrix where the pillars are
embedded is Silicon dioxide (ng = 1.46). Note that, for such
a geometrical setting nyd ~ ng(a — d) is satisfied [6]. Starting
from this regular structure, keeping constant the number of
pillars throughout the crystals, a number of less regular crys-
tals have been synthesized by concentrating more and more
pillars in certain unit cells of the original crystal. In this way,
some unit cells of the crystal have no pillars. Figure 2 shows
a few representative realizations of the different crystals con-
figurations. For clarity, the different crystals are named corre-
sponding to the number of pillars per cell (1,2,3, .. .,16).
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FIG. 1 (a) Schematic of a square lattice of dielectric pillars; (b) The diameter of the

column d is 75 nm and the lattice constant a is 300 nm.

The pillar distributions in the different photonic structures
are set up in order to have a selected homogeneity, that we
describe herein with the so called Shannon index. In several
fields of science, the diversity is correlated to a Shannon in-
dex [21, 22]. The Shannon-Wiener H' index is a diversity index
used in statistics, defined as

S
— ) pilogp; (1)
j=1

where p; is the proportion of the j-fold species and s is the
number of the species. This index is widely used in statis-
tics and ecology as an evenness measurement and in physics
in the field of information theory [21]-[24]. Dividing H' by
log(s) we have normalized the index constraining it within
the range (0,1). We used the normalized Shannon index (i.e.
0 < H' < 1) as a measurement of the homogeneity of the
transmission medium: in this study p; indicates the propor-
tion of pillars belonging to the j-fold cell and s the total num-
ber of cells. In an analytical way, H' is the highest when the
medium has perfect uniform structure and is the lowest when
the medium is completely scalar (in our case the most aggre-
gated it is when all the pillars are in one cell, a limit structure
that we have not used in our experiment since it is not possi-
ble, in our two dimensional model, to put more than sixteen
pillars in a cell).

To set up the crystals, we consider a 12 x 12 photonic crystal
cells and we start getting one pillar inside each cell to build the
perfect uniform structure: a regular lattice of Titanium diox-
ide, i.e. crystal 1 in Figure 2. This first structure is the square
lattice of dielectric pillars [6], the crystal with the maximum
evenness [22] in which H’ is equal to 1. At second step, we
build a less uniform crystal by aggregating two pillars in each
cell, thus a certain number of cells becomes empty. Crystal 2 in
Figure 2 gives a possible realization as an illustrative example.
At third step we concentrate three pillars in each cell leaving
an increasing number of cells without pillars. We continue the
concentration of diffractive elements with this method for the

Shannon Average Error
Crystal index Transmission (Standard
450-1400 nm Deviation)
1 1 1 -
2 0.86 0.8674 0.0224
3 0.778 0.8086 0.0243
4 0.721 0.8429 0.0297
6 0.639 0.7908 0.0426
8 0.58 0.8054 0.0604
12 0.5 0.7043 0.0727
16 0.44 0.7436 0.0772

TABLE 1 Shannon index and transmission of light in the 450-1400 nm spectral range for
each crystal. The last column gives the standard deviation of the average transmission

for the ten different realizations.

following crystals until to reach the most aggregated structure
we can make, by taking into account the maximum number of
pillars which can be contained in a cell respecting the optical
distance between pillars (in our case 16). Thus, the aggrega-
tion method makes crystals in which all no empty cells have
the same number of pillars, i.e. in Crystal 1 every no empty
cell has one pillar, in Crystal 2 every cell has 2 pillars, in Crys-
tal 3 every no empty cell has 3 pillars, etc... For each crystal
n, ten different realizations have been considered by allocat-
ing in a random fashion the (12 x 12)/#n clusters among the
available 12 x 12 cells of the original crystal. In this way, the
ten realizations of each crystal n have the same Shannon in-
dex. As an example, the different distributions for Crystal 2
are depicted in Tables 2-11 in the Appendix.

Since for a crystal where the pillars aggregate in clusters in
some unit cells (and the other unit cells become consequently
empty) the Shannon index decreases, we have obtained a set
of crystals, from the most uniform to the most aggregated, in
inverse proportion to H'.

For the calculation of the light transmission of the photonic
structures through the finite element method, we assumed a
TM-polarized field and used the scalar equation for the trans-
verse electric field component Ez

(ai + aﬁ) Ez +n*k3E; =0 )

where 7 is the refractive index distribution and kg is the free
space wave number [6, 25]. As input field, a plane wave with
wave vector k directed along the x axis has been assumed.
Scattering boundary conditions in the y direction has been
used.

3 RESULTS AND DISCUSSION

We have calculated, by the finite element method [6, 25], the
transmission of light in a broad range of wavelength (450-
1400 nm) for different crystals, starting from a perfect uniform
one, in which the evenness and the Shannon index is at the
maximum, to the most aggregated structures.

For each crystal the Shannon index, calculated according to
Eq. (1), is reported in Table 1 as well as above the crystal
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FIG. 2 Examples of realizations of photonic structures with different pillar distributions. Each scheme is correlated to a determined Shannon index.
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FIG. 3 Calculated transmission spectra for Crystal 1 and Crystal 12, along the crystallo-

graphic direction K.

schemes depicted in Figure 2. The corresponding transmission
spectra have been calculated in the 450-1400 nm wavelength
range, i.e, including visible and part of the near infrared (NIR)
radiation. This range of wavelengths can be assimilated to the
emission spectrum of a supercontinuum source.

In Figure 3 the calculated transmission spectra, along the crys-
tallographic direction K, of crystals 1 and 12 (i.e., for one
of the ten distributions that have been designed for Crystal
12) are depicted. Crystal 1 is a regular photonic crystal that
shows a photonic band gap centred at 925 nm according to
the Bragg Snell law Apragg = 7egr/A, Where Appagg is the cen-
tre wavelength of the stop band, n, is the effective refrac-
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FIG. 4 Average transmission of the crystals as a function of the Shannon index.

tive index of the lattice and A the spatial period (in our case,
A = a = 300 nm). The transmission spectrum of Crystal 12
does not display a photonic band gap. On the other hand,
different peaks over all the wavelengths are present and the
amount of light transmitted through the crystal is relatively
low in all the range 450-1400 nm.

For all the crystals, the fractional power transmission, aver-
aged over the entire spectral range, has been computed and
correlated to the Shannon indices (see Table 1). In Figure 4
we plot these values as a function of the Shannon index of
the corresponding crystal. The behaviour that we have found
is a clear increase of light transmission in the range 450-
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FIG. 5 Scheme of Crystal R.

1400 nm by increasing the Shannon index: this means that
the more the pillars are clustered in certain unit cells the less
the light is transmitted through the crystal. It is noteworthy
that this trend is in good agreement with a linear behaviour
(R? = 0.845, coefficient of determination). This result could
be counterintuitive since one should expect that, by enlarg-
ing portions of space without diffractive elements in the crys-
tal, the light could be more easily transmitted. It should be
also noticed that the linear increase of average transmission
with Shannon index turns out to be rather insensitive to slight
variations of the spectral range. For example, if we integrate
the intensity of light transmission in the 525-1325 nm spectral
range (instead of 450-1400 nm), we observe the same linear
trend of the light transmission as a function of the photonic
structure homogeneity.

One could ask whether the linear trend shown in Figure 4, and
in particular the values of average transmission predicted by
the linear fit of Figure 4, could be extended to the case where
the pillar cluster sizes are not uniform. To this aim, we have
performed a further in silico experiment, where we have se-
lected a crystal with a random but skewed distribution of pil-
lars in the cells. To design this crystal, we have assigned pillars
in cells by a fitness model [26]. We have used this model in or-
der to make a crystal space with skewed clusters size without
benchmark distribution. Thus, we have obtained a random
crystal in which the clusters size distribution (i.e. pillars for
cells distribution) is skewed. This crystal has no empty cells
with various number of pillars and therefore it differs with
respect to the set of crystals used in the first experiment.

Figure 5 shows the scheme of the crystal with the random
skewed distribution of pillars (here called crystal R). Crystal
R has a Shannon index of 0,6931. Starting from this crystal, as
we have done for each crystal in the former set of crystals, we
have designed ten different replicates by varying the position
of the pillar clusters (i.e. ten cell permutations), but by keep-
ing constant the cluster size set and, consequently, the Shan-
non index of the crystals. In Tables 12-21 in the Appendix the
ten differents crystals are shown. The resulted average trans-
mission of crystal R (performed with the same method used
for crystals 1,2, 3. . .) gives a value of 0.8059 £ 0.0334, while the

value extracted from the linear fit of the previous experiment,
for a Shannon index of 0.6931, is 0.8218 = 0.0380. This indi-
cates that, for the example investigated, the average transmis-
sion of a photonic structure with random pillar cluster sizes
can be predicted by the linear relationship between average
light transmission and Shannon index that we have found.
Such a result might suggest that the Shannon index could
provide a global parameter to approximatively predict light
transmission even for randomized cluster size photonic struc-
tures.

4 CONCLUSIONS

In conclusion, in this in silico experiment we have found that
the evenness of the photonic crystal can affect its transmission
properties in a broad range of wavelengths (about 500 nm
around the centre of the photonic band gap of crystal 1), with
a linear trend. Our study indicates that a coarse-grained be-
haviour of light transmission, in the case of two dimensional
crystals with a disorganized cluster distribution of pillars, can
be estimated from a simple computation of the Shannon index
as the parameter that measures the grade of homogeneity of
the structure. Owing to the analogy between photonic trans-
port in periodic media and electronic transport in semicon-
ductors, our results could be of interest beyond optics, pro-
viding useful insights into the transport properties of elec-
trons in inhomogeneous semiconductor lattices and superlat-
tices. From an applied point of view, our results can be use-
ful for the engineering of scattering layers for light coupling
and trapping enhancement in photovoltaic devices [27] and
for the study of light scattering in diffusive media for diag-
nostic imaging [28].
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A APPENDIX

Tables 2-11 detail different distributions for Crystal 2. Simi-

larly Tables 12-21 detail different distributions for Crystal R.
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TABLE 17 Different distributions for Crystal R.

TABLE 13 Different distributions for Crystal R.
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