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When coupled modes are excited in a multilayered structure, the profile of the reflected beam presents exotic characteristics like unex-
pectedly large lateral shifts or beam enlargment. These results are surprising because they are not accounted for by classical approaches
(Artmann’s formula or Tamir’s description of the reflected beam’s profile). Studying such situations requires reliable numerical tools -
that is why our programmes are published with this paper. Such tools can be used to understand the behaviour of any multi-layered
structure. [DOI: 10.2971/jeos.2010.10025]
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1 INTRODUCTION

Non-specular phenomena in the reflection of beams have been
studied since the middle of the nineteenth century (see [1] for
a review) from a theoretical point of view and since the middle
of the twentieth century with the work of Goos and Hänchen
[2] for the experimental part. The phenomenon initially con-
sidered is the lateral displacement of a beam in the case of
total internal reflexion. A formula giving the asymptotic shift
of the beam was soon proposed by Artmann [3] to describe
the Goos-Hänchen effect, but it finally proved to be more gen-
eral since it could account for all lateral shifts, even the giant
lateral shifts due to leaky mode excitation [4].

This is probably the reason why the displacement of beams
is often called “giant Goos-Hänchen effect” though it has lit-
tle to do with what happens in the case of mere total reflec-
tion. At that time it was underlined that these leaky modes
could even be responsible for negative lateral shifts [4, 5].
Later, negative lateral shifts have been predicted for metals [6]
and lossy structures [7] - a completely different phenomenon.
As a more complete description of the reflected beam’s pro-
file was furnished [4, 7], lateral shifts appeared as a particular
non-specular phenomenon among others [8]. By that time it
seemed that everything had been said and done about non-
specular phenomena and lateral shifts.

When left-handed materials (LHM) [9] were shown to be fea-
sible [10], it appeared that a large part of the physics of lamel-
lar structures had been missed out [11]–[13]. The study of lat-

eral shifts thus attracted renewed interest: the Goos-Hänchen
effect was shown to be negative for total reflection on LHM
[14, 15], giant lateral shifts were predicted for structures con-
taining LHM [16]–[20]. An analog of the Goos-Hänchen ef-
fect was proposed in the case of a beam reflecting on pho-
tonic crystals [21] and structures including photonic crystals
and producing giant positive or negative lateral shifts were
proposed [22, 23]. Negative shifts were predicted for various
structures such as a simple slab when all fields are propaga-
tive [24] or for lossy structures [25, 26]. It should be stressed
that lateral shifts are not just a theoretical subject but that they
have been measured in various cases [27, 28] and have even
found applications [29].

All these non-specular phenomena in the reflection of beams
are linked to the behaviour of the underlying multilayered
structure : they are a signature of a phenomenon. But Art-
mann’s formula or Tamir’s approach, since they are tied to
the reflection coefficient’s properties, do not give any insight
into the physics of the structure. The only way to analyze the
behaviour of the structure is to use numerical simulation.

The purpose of this paper is to study multilayered structures
presenting exotic non-specular phenomena and to interpret
previous works, using reliable numerical tools that are given
with this article.

The paper is organized as follows. In a first part we recall the
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classical approaches of non-specular phenomena. The second
part explains how we have chosen a numerical method for our
simulations. The third part is devoted to the physical analysis
of multilayered structures [13, 21, 22] and to the study of the
reflected beam’s profile.

2 CLASSICAL APPROACHES OF
NON-SPECULAR PHENOMENA

The two classical approaches of non-specular phenomena are
(i) the study of the asymptotic regime for which simple ana-
lytical results like Artmann’s formula are available (ii) Tamir’s
description of the reflected beam’s profile when a resonance of
the structure is excited.

2.1 Asymptotic regime

When the width of the incident beam is large enough, the lat-
eral shift of the reflected beam is given by Artmann’s formula

∆ = − 1
n k0 sin θ

∂φ

∂θ
(1)

where θ is the angle of incidence of the beam in a medium
characterized by an optical index n, k0 = ω/c being the
wavevector’s modulus in the vacuum, and φ the phase of the
reflection coefficient of the structure.

The reflected beam’s enlargment in the asymptotic regime was
given for the first time by Tamir [8] under the form

w2
r = w2

i + 2=
[
−i

∂

∂α

(
1
r

∂r
∂α

)]
, (2)

where α = n k0 sin θ, wr (resp. wi) is the waist of the reflected
(resp. incident) beam and r the reflection coefficient.

A straightforward calculation shows that this result can also
be written

w2
r = w2

i + 2
(

ρ′′

ρ
− ρ′2

ρ2

)
(3)

where ρ = |r| and ρ′ = ∂ρ
∂α .

The asymptotic formulae are valid only when the incident
beam is so large (and thus spectrally so narrow) that φ can
be considered as linear - at least for Artmann’s formula. For
the enlargement’s formulae, which has been largely ignored
by the community, the conditions to fulfill are unclear and
would probably require a more detailed analysis which is be-
yond the scope of the present work. Anyway, for the genuine
Goos-Hänchen effect the lateral shift predicted by Artmann’s
formula cannot be reached [30], and very large beams may
be required to reach the asymptotic lateral shift when a leaky
wave is excited. In general, the lateral shift is thus smaller
than Artmann’s formulae prediction [31] - which nevertheless
gives strong indications that something is happening inside
the considered structure.

2.2 Descript ion of the ref lected beam’s
profi le

The analytical approach of Tamir and co-authors [4, 7] relies
on the assumption that the reflexion coefficient can be approx-
imated (in the angular domain covered by the beam, centered
on α0) by a simple expression based on the presence of a pole
and a zero associated to a particular resonance of the struc-
ture :

r(α) = r(α0)
α− αz

α− αp
(4)

where αp (resp. αz) is the location of the pole (resp. the
zero) in the complex plane. Provided the above assumption
is founded, this approach is then valid for any width of the
incident beam, which makes it both more precise and general.
But it cannot describe the original Goos-Hänchen effect, since
the variation of the phase is due to the presence of a branch
point instead of a pole.

Some rather complex calculations [4] lead to the conclusion
that the reflected field presents two parts (i) a gaussian part
due to the reflection of the incident beam on the first interface
and (ii) a part due to the leakage of the resonance excited in the
structure for which an analytical approximation can be found.

With this approach, it is possible to conclude that the lateral
shift due to the excitation of a leaky mode is much larger than
the Goos-Hänchen shift (but that the reflected beam is dis-
torted) and that it can be negative either when the leaky mode
is backward [4] or when the structure is lossy [7]. In the lat-
ter case, the zero is closer to the real axis than the pole which
gives rise to a negative lateral shift.

This particular type of negative lateral shift can be predicted
using Artmann’s formula but in this case the modulus of
the reflection coefficient is close to zero and the variation of
the phase occurs on so narrow an angular spectrum that the
asymptotic regime is extremely difficult to reach. Analytical
[7] and numerical [31] studies of such cases have shown that
the only effect that can be seen is a splitting of the beam in
two and almost no negative lateral shift. In these conditions,
it is much more relevant to use a precise description of the re-
flected beam’s profile than Artmann’s formula, which may be
misleading.

3 SIMULATION OF MULTILAYERED
STRUCTURES WITH UNCONVENTIONAL
MEDIA

As already mentioned above, the study of reflected beams
profile has recently been extended to the case of structures
with a high number of conventional layers [21, 22] or contain-
ing left-handed materials [12]. Multilayered structures may
behave as a left-handed material [32] and meta-materials can
be considered as multi-layered structures [33]. Reliable and
efficient simulation tools are of course necessary to study all
these cases.
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3.1 Descript ion of the problem

The problem is to compute the field in a multilayered struc-
ture illuminated by a gaussian beam coming from above as
shown Figure 1. The spectral amplitude of the beam is given
by

A (α) =
w

2
√

π
e−

w2
4 (α−α0)

2
e−iαx0 (5)

where x0 is the position of the beam’s center, given by∫
x|A|2dx

/ ∫
|A|2dx, and α0 = √

ε µ k0 sin θ0, θ0 being the
angle of incidence of the beam.

For the E‖ (resp. H‖) polarization and for a given α the field
Ey (resp. Hy) inside the j-th layer can be written

1
2π

∫
A(α)

(
A+

j eiγj (z−zj) + B+
j e−iγj (z−zj)

)
ei(α x−ω t)dα. (6)

where γj = (ε j µj k2
0 − α2)1/2, zj is the position of the top of

the jth layer and A+
j and B+

j are computed for an incident plane
wave of amplitude 1.

Above (respectively under) the structure, the expression of the
field is simply (

r eiγ1 z + e−iγ1 z
)

ei(α x−ω t) (7)

(respectively t exp[−i(γN z + α x−ω t)]) by definition of r
and t.

The system which has to be solved to find r and t (and even-
tually all the A+

j and B+
j coefficients) is then, in the case of the
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FIG. 1 The structure presents N − 1 layers. Each layer is characterized by its permit-

tivity ε j and its permeability µj. The problem is invariant under translation in the y

direction.

E‖ polarization and ∀ j ∈ 〈1, N − 1〉

A−j + B−j = A+
j+1 + B+

j+1 (8a)
γj

µj

(
A−j − B−j

)
=

γj+1

µj+1

(
A+

j+1 − B+
j+1

)
(8b)

with A−j = A+
j eiγ (zj+1−zj), B−j = B+

j e−iγ (zj+1−zj)

For the H‖ polarization, µj only has to be replaced by ε j.

3.2 Choice of the numerical method

Numerically, Eq. (6) is computed using a regular discretiza-
tion of the spectral domain so that the field is pseudo-
periodical in the x direction. Only a few discrete values of α

are thus considered. Using a double sum method as described
in [34] could probably avoid the periodization of the problem
but it is complicated and costly so that this technique has not
been used here.

Eqs. (8) can be solved using different methods : T matrix [35,
36], Abelès method [37, 38] or Dirichlet to Neumann maps [39]
which have been introduced more recently.

The main source of numerical instabilities is usually the can-
cellation phenomenon : since the number of digits retained
in any floating number is finite, the addition of two floating
numbers is rarely exact. In order to avoid numerical prob-
lems, it is recommended to manipulate floating numbers of
the same magnitude. A good test for the numerical stability
of a method is thus to consider the case of a total frustrated
reflexion : due to the evanescent waves, the method will have
to deal with both very large and very small numbers. If only
numbers of the same magnitude are combined, the method is
stable.

We have therefore used all these methods to compute the
transmission coefficient in the case of a simple frustrated total
reflexion (a slab of air in a medium with a permittivity ε = 4
and with an incidence angle of π/4). The T matrix and Abèles
methods become unstable for a thickness of air greater than
5.5λ. The S matrix and the Dirichlet to Neumann methods
remain perfectly stable and provide exactly the same results.
The T matrix method is very often used because of its simplic-
ity, but it is unstable even in the case of a simple Bragg mirror
when the field is propagative everywhere as shown Figure 2.

The Dirichlet to Neumann (DtN) and scattering matrix
method may still present numerical problems of another
type : the division by zero. This may happen for particular
values of a layer thickness for the DtN method. Using the
scattering matrix method, division by zero may happen only
in the case of an interface between two media with exactly
opposite permittivity and permeability (for a Pendry lens
[11], for instance).

Let us finally point out that in this method it is necessary
to determine which part of the field is considered upward
and which one is downward. When left-handed materials are
present in the structure then this choice can be based either
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FIG. 2 Transmission coefficient of a Bragg mirror computed using transfer matrices

(red curve) and scattering matrices (blue curve). The unstability of the transfer matrix

method causes a non nul transmission in the bandgap. The Bragg mirror, illuminated

in normal incidence, consists of a succession of ε = 2 and ε = 6 media of thickness

88 nm and 51 nm respectively. This curve has been obtain for around 90 patterns of

the Bragg mirror.

on the wave vector or on the Poynting vector since these are
opposite in left-handed media.

Analytically, these choices are equivalent inside a layer [40]
but of course not outside [41] (or the reflection coefficient
would not be correctly defined). Mathematically, this means
that the choice of the branch cut for the determination of the
propagation constant γj = (ε j µj k2

0 − α2)1/2 inside a layer has
no importance for the determination of the field and the reflec-
tion coefficient. That is why this branch cut does not appear
when the complex plane representation of a reflection coeffi-
cient is computed [20].

But numerically, this choice has an importance : a better stabil-
ity is obtained if the direction of propagation is such that the
wave is decaying in this direction. This can be easily done by
chosing a determination of the square root inside the layers so
that the imaginary part of the constant propagation is always
positive.

The Matlab code which corresponds to this method is pro-
vided as supplementary files (size 16 kB, format: m, see
field.m, cascade.m, intermediaire.m, field octave.m) with this
paper. We tried to make its use as simple as possible for the
reader. It is especially adapted to the simulation of structures
containing a high number of layers.

4 EXOTIC NON-SPECULAR PHENOMENA

4.1 Reflect ion on Bragg mirrors

Two examples are here considered to illustrate how useful
numerical methods can be to understand physical situations.
Figure 3 shows the structure of the field when an incident
beam is reflected by a Bragg mirror. The field inside the Bragg
mirror is similar to an evanescent Bloch mode although the
field in each layer in still propagative.

FIG. 3 On this image the Bragg mirror (lower part) has been represented 10 times

bigger than it really is, in order to see the incoming beam as well as what happens

in the photonic crystal. The Bragg mirror is a succession of ε = 2.25 and ε = 4

media of thickness 100 nm and 75 nm respectively. The number of periods is of 30.

The structure is illuminated by a beam characterized by a wavelength of λ = 500 nm,

an incidence angle of 42◦ and a waist of 100λ.

FIG. 4 A defect buried in a Bragg mirror is illuminated using a gaussian beam (wave-

length λ = 0.965, waist 100λ, incidence angle θ0 = 24.675◦) in E‖ polarization. The

Bragg mirror is a stack of alterning medium 1 (ε1 = 2.22) layers with a thickness of

h1 = 1/4
√

ε1 and medium 2 (ε2 = 1.42) layers with h2 = 1/4
√

ε2. After 7 patterns,

the thickness of a medium 2 layer is doubled. The total number of patterns is about

40. The structure is rather similar to the one proposed in [22].

The latter remark will allow us to interpret another giant lat-
eral shift [22]. Figure 4 shows what happens when a Bragg
mirror with a defect is illuminated. Obviously, the field is
Bloch-evanescent above and under the defect so that every-
thing happens as if a guided mode was excited in a dielectric
slab by evanescent coupling - and no “surface wave” is in-
volved, as suggested previously [22]. Moreover, a defect cor-
responds to a single pole of the reflection coefficient in the
bandgap of the mirror so that the classical analysis [4] based
on leaky modes is undoubtedly valid. The profile of the re-
flected beam corresponds exactly to this analysis provided the
defect is buried deep enough in the Bragg mirror as shown
Figure 4. The exponential decay of the profile in the propaga-
tion direction is controlled by the imaginary part of the pole
corresponding to the guided mode.

4.2 Co-direct ional coupling

Let us consider the case of two coupled waveguides excited by
evanescent coupling. Figure 5 shows the lateral displacement
of the reflected beam in three situations (i) for a single waveg-
uide, (ii) for two coupled waveguides with the same incidence
angle of the beam and (iii) for the two coupled waveguides
and an incidence angle corresponding to the symmetric mode.
When a leaky mode is excited (situations i and iii) the lateral
shift increases with the beam width, tending towards the pre-
diction of Artmann’s formula. It is the case in situation ii, but
the lateral shift is surprisingly much higher for narrower beam
than the asymptotic shift and even than the lateral shift for the
other situations (and the same width of the incident beam).

10025- 4
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FIG. 6 The phase of the reflexion coefficient in two different cases of coupling. Red
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energy between the two waveguides can be obtained for an intermediate incidence

angle of 33.9◦. Blue curve : contra-directional coupling between two waveguides. In

both cases the modulus of the reflexion coefficient is equal to one over the whole

angular range.

Figure 6 shows the phase of the reflection coefficient for the
coupled waveguides structure.

This is particularly interesting because the ratio between the
lateral shift and the beam width is particularly high in this
case - and thus particularly easy to measure. Of course, this
phenomenon occurs for narrow beams - when the asymptotic
regime is not reached. But in this case, Artmann’s formula is
even misleading - which is not common.

The physical explanation of such a phenomenon is given Fig-
ure 7. The picture clearly shows that the energy is oscillating
between the two waveguides. As long as the energy is “hid-

FIG. 7 Top: The incoming beam (waist of 100λ, 33.9◦ incidence angle) propagating in

the upper medium (ε = 5, µ = 1) excites two coupled waveguides (h = 0.285391λ,

ε1 = 3,µ = 1) surrounded by air and separated by λ. The distance between the prism

and the first waveguide is of 0.65λ. Bottom: The same, but with one waveguide only.

In both cases the simulation domain is 6000λ large and about 6λ high.
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FIG. 8 The figure shows the profile of the reflected beam in the case of a single

waveguide (blue curve) and of two coupled waveguides (red curve). The parameters

are given in the caption of Figure 7.

den” in the deeply buried waveguide, it does not leak out.
That is what explains the unexpected large lateral shift for
small widths.

The profile of the reflected beam is so peculiar (see Figure 8) in
this case that it cannot be accurately described by Tamir’s ap-
proach. The latter would be relevant for a single waveguide,
but the exponential decay of the profile is faster in this case -
so that Tamir’s approach cannot account for the whole lateral
shift.

4.3 Contra-direct ional coupling: the l ight
wheel

A new concept has recently been developed in the context
of multi-layered structures: when a conventional dielectric
waveguide is coupled with a backward waveguide (a layer of
LHM with carefully chosen characteristics [42]) then the light
forms a localized mode called a “light wheel” [13]. This par-
ticular mode can be excited using evanescent coupling (i.e. a
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FIG. 10 The light wheel is excited by an incident gaussian beam (angle: 36.9◦, waist:

10λ ). The modulus of the field is represented in a domain 100λ large, 5λ high. White

arrows indicate the propagation direction of light.

prism). Due to the evanescent coupling, the light wheel leaks
out of the structure, leading to an unusual beam profile.

Here the structure constists in two coupled waveguides which
can be excited using an incident beam propagating in a high
index medium. The whole structure is presented in Figure 9.
The upper guide is a mere dielectric slab while the lower
waveguide is made of a LHM. The thicknesses are chosen so
that the two guides present a guided mode for the same prop-
agation constant.

Figure 10 shows the modulus of the field in the structure when
a gaussian beam with the correct incidence angle illuminates
the structure.

The reflected beam is actually composed of the beam reflected
by the first interface and of the leakage of the light wheel as
shown Figure 11. This explains why the beam is enlarged (the
leakage being as large as the light wheel) but and only slightly
displaced (since both the primary reflected beam and the light
wheel are centered).

Here, we are not in the asymptotic regime so that the results
given by Eqs. (1) and (3) are not expected to hold. The exci-
tation of the light wheel produces a negative lateral shift of
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FIG. 11 Profile of the reflected beam when a light wheel is excited (red curve). The pro-

file of the incoming beam has been plotted for comparison (blue curve). The reflected

beam is obviously enlarged but not particularly shifted.

0.64λ. According to Artmann’s formula, this shift should be
negative (see the phase of the reflection coefficient Figure 6)
but of 6.49λ. And according to Eq. (3), there should be no en-
largement of the reflected beam. Using an asymptotic analysis
in this context could thus be misleading.

Since the reflection coefficient presents two poles with identi-
cal real parts and opposite imaginary parts [13] the assump-
tion that it can be approximated with a single zero and a single
pole is not valid. This explains why the reflected beam’s pro-
file cannot be described using Tamir’s approach [4, 7].

Therefore, when a light wheel is excited, all the classical an-
alytical analyses fail to describe what happens : the reflected
beam is hardly displaced but it is enlarged by the light wheel.
This is a case for which reliable numerical tools must be em-
ployed - or new analytical tools should be developed, dif-
ferent from what has been proposed until now. Finally, this
shows that it would probably be difficult to extend the analy-
sis of Tamir to the case of co- and contra- directional coupling:
although in both cases two poles are responsible for what hap-
pens, the two phenomena don’t have much in common.

5 CONCLUSION

This work is a contribution to the study of beam reflection
on multi-layered structures. We have shown that some pe-
culiar phenomena could lead to exotic reflected beam’s pro-
files and unexpectedly high lateral displacements (for narrow
beams). This underlines the limits of the classical approaches
of non-specular phenomena through the asymptotic analysis
or through analytical models of the reflected beam’s profile.

Artmann’s formula gives clues that something is happening
in a structure, and useful indications on the sign of the lateral
shift. But its predictions are not fully reliable (the asymptotic
limit is sometimes hardly reached) and it cannot explain lateral
shifts. In the cases we have explored, it may even prove mis-
leading. Maybe the community should use asymptotic analy-
sis more carefully and, as far as possible, compare to numeri-

10025- 6



Journal of the European Optical Society - Rapid Publications 5, 10025 (2010) F. Krayzel et al.

cal simulations. Extremely narrow beams are nowadays easy
to produce, so that phenomena occuring before the asymptotic
regime should not be neglected.

Tamir’s work, although of considerable importance, is not
definitive : it is for instance unable to describe the profile of
a reflected beam when a light wheel is excited. An analytical
approach of these exotic phenomena is still lacking.

That is the reason why, with this article, we have given our
simulation tools for multi-layered structures and paid much
attention to the stability of the methods we have employed.
We have made these programmes as simple to use as possi-
ble. Our hope is that our work will be useful to the commu-
nity - for we are convinced that the physics of multi-layered
structures is far from being exhausted.
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