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We propose a method of numerical solution of a type of inverse scattering problem that arises in the optical characterisation/quality control
of nanostructures. The underlying global, ill-posed, nonlinear optimisation problem is first localised by best-fit matching of library and
measured diffraction efficiency patterns. The inverse problem is then solved using piecewise linear interpolation between the best far-field
matches. Finally, the results are refined, on average, by solving an additional local optimisation problem formulated in terms of the method
of auxiliary sources. To illustrate the proposed method, we apply it in a concrete quantitative characterisation of a non-periodic, nano-scale
grating defect, with numerically simulated measurements. It is shown that the presented procedure can solve the inverse problem with an
accuracy usually thought to require rigorous electromagnetic theories. [DOI: 10.2971/jeos.2010.10021]
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1 INTRODUCTION

Optical Diffraction Microscopy (ODM) [1]–[5] is a non-
destructive technique of characterisation of micro and nano
structures embedded in materials. Here, specific features
of the sample under investigation are reconstructed from
the measured optical power in the scattered far field. The
technique thus requires the solution of an inverse scattering
problem.

In an industrial context, such as the automated quality control
of nano-scale structures embedded in materials, the inverse
problem needs to be solved rapidly. Also, the structures of in-
terest are typically comparable to the wavelength of the illu-
minating light used in the ODM, and accuracy requirements
may therefore make it necessary to treat the inverse scatter-
ing problem using the full classical electromagnetic model,
rather than asymptotic formulations. Furthermore, the prob-
lem of actual interest may not be a ’full’ inverse scattering
problem, since it may suffice to only measure a perturbation
from an otherwise well-known scatterer structure. This is the
case, e.g., in the detection and measurement of small manu-
facturing errors in the sample under investigation. The per-
turbations of interest must in general be assumed to appear
non-periodically in the investigated sample.

The Method of Auxiliary Sources (MAS) [6]–[15] is a numer-
ical technique applicable in the solution of forward and in-
verse scattering problems, and it is a natural candidate for in-
tegration into ODM for several reasons. If applied properly,
the method can be numerically extremely efficient, and it has
the potential to outperform the traditional Integral Equation

(IE) schemes, especially for electrically large scatterers with
complicated boundary. In addition, the MAS is in general sig-
nificantly easier to implement than the traditional IE schemes.
Also, the MAS is based on the full electromagnetic model, and
it is well-suited for solution of both periodic and non-periodic
scattering problems. Finally, it can be advantageous that the
optimisation problems resulting from the formulation of in-
verse scattering problems in terms of the MAS do not directly
involve the geometry of the scatterer as an optimisation pa-
rameter. We elaborate on the above in Section 2.

The purpose of this paper is to draw attention to the MAS as
a means of formulating and numerically solving those inverse
scattering problems that occur in the ODM where

• the ’nominal,’ or ’defect–free,’ scatterer geometry and
material composition are given,

• the range of the expected deviations from the nominal
scatterer is well-known and relatively small, and

• the deviations are not necessarily periodic.

As a concrete example, we use a simple MAS implementa-
tion to determine a non-periodic, nano-scale grating defect
based on the measured power in the scattered far field. The
numerically simulated measured scattered field is compared
with a library of far-field patterns. A preliminary solution
of the inverse problem is obtained by piecewise linear inter-
polation between the three best-fit matches from the library.
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Finally, to refine the results, a local optimisation problem is
formulated in terms of the MAS and solved, with the above
preliminary solution used as the starting guess. The exam-
ple problem is two-dimensional, with transverse-electric (TE)
polarised fields. The performance of the proposed method
in the transverse magnetic (TM) case, as well as the three-
dimensional case, is to be investigated in a future publication.

The MAS is described in some detail in Section 2. The main
characteristics of the method, as well as its applicability to in-
verse scattering problems, are briefly compared to those of
the traditional IE schemes. In Section 3, a concrete inverse
scattering problem occurring in the ODM is described. Our
method of solution of the inverse problem using the MAS is
described in Section 4. The numerical results are presented
and discussed in Section 5. Finally, Section 6 contains conclu-
sions and suggestions for future work.

2 THE METHOD OF AUXILIARY SOURCES

Formally, the MAS is a special case of the Integral Equa-
tion/Method of Moments (IE/MoM) variational formulation
of boundary problems, characterised by the choice of Dirac
delta functions δ(x−x′) for the expansion and test vectors.
Formulations of the method of varying sophistication have
been studied, both analytically and numerically, at least since
the late 1960s, the interest being fueled to a large extent by
the potential for the construction of extremely efficient algo-
rithms for the numerical solution of direct and inverse scat-
tering problems. It seems that the method originated with
Kupradze [6]. There is a substantial and growing body of lit-
erature on the various theoretical and applied aspects of the
MAS. References [7]–[10] describe the method and put it in a
more general theoretical context, and [11] gives an excellent
overview of various issues related to the use of the MAS in
applied electromagnetics. Concrete applications of the MAS
can be found in [11]–[15].

The description of the MAS in this section is restricted to
applications in two-dimensional, time-harmonic electromag-
netic scattering. The example given first is in direct scattering,
and it is for introductory purposes only. The second example
is in inverse scattering, and it is relevant to our method de-
scribed in Section 4.

Figure 1 shows a generic time-harmonic electromagnetic scat-
tering problem in the plane.

The considered fields are assumed TE-polarised (the electric
field is perpendicular to the plane of the paper), so the scat-
tering problem is scalar with respect to the electric field. A
source illuminates a perfectly electrically conducting scatterer
with an incident electric field Ei, and the scatterer radiates the
scattered electric field Es. The total electric field Etot = Ei + Es

vanishes on the surface of the scatterer. The constant k is the
wavenumber 2π/λ, where λ is the operating wavelength. If
the considered problem is a forward scattering problem, that
is, if the boundary of the scatterer is well-known and it is of in-
terest to find the scattered field Es, then a corresponding MAS
formulation is shown in Figure 2.
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FIG. 1 A two-dimensional scattering problem, TE polarisation.
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FIG. 2 A MAS setup used to solve the direct problem of Figure 1. The auxiliary sources

are radiating in free space.

The scatterer is replaced by a number of so-called auxiliary
sources, located in the interior region of the scatterer at some
selected points x′1, . . . , x′N , and radiating in free space. The
sources are electrical line currents perpendicular to the plane
of the paper, and they are to radiate an approximation to the
exact scattered field (in the exterior of the scatterer). Hence
the scattered field Es is approximated in the exterior of the
scatterer by a finite linear combination of the form

EMAS(x) =
N

∑
ν=1

Cν H(2)
0 (k|x− x′ν|). (1)

Here H(2)
0 is the Hankel function of zero order and of the sec-

ond kind. The summand number ν in Eq. (1) is proportional
to the radial outgoing fundamental solution of the Helmholtz
operator in the plane, with singularity at x′ν. Recall that, for
every x′ ∈ R2, the Helmholtz system

(∆+k2)u(x) = δ(x−x′), x ∈ R2, (2)

lim
|x|→∞

(
|x|1/2(∂|x|+ik)u(x)

)
= 0 (3)

has the unique solution u(x) = (i/4)H(2)
0 (k|x− x′|). The ’out-

going radiation condition’ is given by Eq. (3). The weights
(complex numbers Cν) occurring in the linear combination
Eq. (1) are determined by ’point matching’, that is, by enforc-
ing the boundary condition at selected points x1, . . . , xN , on
the scatterer boundary. The resulting system of linear equa-
tions, to be solved for the unknown weights, is given by

N

∑
ν=1

Cν H(2)
0 (k|xµ − x′ν|) = −Ei(xµ), µ = 1, . . . , N. (4)
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FIG. 3 A MAS setup used to solve the inverse problem of Figure 1. The auxiliary sources

are radiating in free space.

Another approach [8] is to have both the complex amplitudes
Cν and the locations x′1, . . . , x′N of the auxiliary sources as un-
knowns, and to find these using nonlinear least-squares opti-
misation. The objective functional here is

d =
N

∑
µ=1

∣∣∣Ei(xµ) +
N

∑
ν=1

Cν H(2)
0 (k|xµ − x′ν|)

∣∣∣2, (5)

and the constraints are formulated to ensure that the auxiliary
sources remain within the scatterer region. The number N of
auxiliary sources can, in principle, also be a variable of optimi-
sation. After solving the optimisation problem, the scattered
field Es is calculated from Eq. (1).

When solving direct scattering problems, a major issue in the
practical implementation of the MAS as in Eq. (4) is the choice
of the number and locations of the auxiliary sources for the
given scatterer geometry and incident field. The accuracy and
convergence of the method are known to be generally sensi-
tive to this choice [11]. Without going into details, since the
topic is outside the scope of this paper, we here only state that
the convergence of the method is guaranteed if the auxiliary
sources enclose the singularities of the analytic continuation
of the scattered field inside the scatterer. When an estimate of
the domain of this continuation is not available, numerical ex-
perimentation is usually needed to find a suitable spatial dis-
tribution of the auxiliary sources. For more on this topic, see
Chapter 6 of [16].

If the problem in Figure 1 is an inverse scattering problem, then
a corresponding MAS formulation is shown in Figure 3. The
scattered field Es, or, alternatively, its amplitude |Es|, is here
assumed well-known at the points x1, . . . , xN , which may well
be in the far field. If one can, for the particular inverse problem
at hand, relate the positions and the amplitudes of the auxiliary
sources to the geometry of the scatterer, then the reconstruction
of the scatterer boundary can be attempted by minimising the
difference

d =
N

∑
µ=1

∣∣∣Es(xµ)−
N

∑
ν=1

Cν H(2)
0 (k|xµ − x′ν|)

∣∣∣2, (6)

and then interpreting the obtained best values of C1, . . . , CN
and x′1, . . . , x′N in terms of a surface geometry. If only the

power of the scattered field is measured, the difference

d =
N

∑
µ=1

∣∣∣|Es(xµ)| −
∣∣∣ N

∑
ν=1

Cν H(2)
0 (k|xµ − x′ν|)

∣∣∣∣∣∣2. (7)

can be sought minimised. In general, the optimisation param-
eters in Eqs. (6) and (7) are the positions x′1, . . . , x′N of the aux-
iliary sources, as well as their complex amplitudes C1, . . . , CN .
Unfortunately, the resulting nonlinear optimisation problem
is typically global and very ill-posed. In analogy with the
direct scattering case, it is generally difficult to choose the
number, location and amplitudes of the auxiliary sources that
would make a good starting guess for the optimisation. Also,
it can be difficult to directly relate the best found amplitudes
and positions of the auxiliary sources to an actual scatterer
geometry. However, in the special case where the scatterer is
known to be a relatively small perturbation of a well-known,
’nominal’ scatterer, it is possible to significantly reduce the
range of permissible values of the parameters of optimisation,
as well as to readily interpret the results of optimisation. An
example of this is given in Section 4. Even better ’reduction
and interpretation’ can perhaps be achieved by investigating
(analytically or numerically) the analytic continuation of the
scattered field to the interior of the ’nominal’ scatterer and of
its perturbations; this will be addressed in a future publica-
tion.

In the rest of this section, the MAS is briefly compared to the
traditional IE formulations in the context of solution of inverse
scattering problems.

In an IE formulation, the inverse scattering problem of Fig-
ure 1 can consist in finding a scatterer surface Γ and a sur-
face current density J on Γ such that the far field radiated by
J has the same power pattern as the measured field, and such
that the total tangential electric field vanishes on Γ. (One can
also place the current J on some fixed, predetermined surface
Γ′, as in the Kirsch-Kress method [17] and the related meth-
ods, and then look for Γ and J as described above.) Evalua-
tion of the objective function of this nonlinear optimisation
problem necessarily involves the evaluation of the intermedi-
ate scattered far fields. In this context, the MAS representation
of scattered fields holds two advantages over the traditional
surface integrals that originate from boundary layer potential
formulations of scattering problems. First, with the MAS for-
mulation, there is no need for numerical integration of surface
currents, whereas the electric field radiated by a z-directed,
time-harmonic electric current distribution J on a surface Γ in
R2 is proportional to the integral∫

Γ
H(2)

0 (k|x− x′|)J(x′)dΓ(x′), (8)

for x in the exterior of Γ. The second advantage of the MAS
is that the scatterer topology is identified only with the auxil-
iary sources, rather than with the sources and with a support-
ing surface Γ. In the abovementioned integral, the domain of
integration Γ is, in general, a parameter of optimisation, and
hence needs to be changed with each iteration. In conclusion,
when MAS is used, the optimisation problem involves an ob-
jective function which is simply a finite sum independent of
the actual geometry of the scatterer surface, as opposed to an
integral taken over a generally variable surface.
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The use of the MAS is not restricted to scattering prob-
lems with simple boundary conditions. The method was also
found suitable for, e.g., dielectric scatterers [13] and scatterers
best modeled by the Leontovich impedance boundary condi-
tion [12, 14].

3 A MODEL INVERSE PROBLEM OF
OPTICAL DIFFRACTION MICROSCOPY

To illustrate our use of the MAS in the context of ODM, we
here consider a concrete two-dimensional inverse scattering
problem that is relevant in the practical characterisation of
micro- and nano-scale surface gratings in materials.

The scatterer, a piece of corrugated silicon (rectangular grat-
ing) with complex refractive index nSi = 3.874 + i0.015, is im-
mersed in air and illuminated by a time-harmonic, uniform
plane wave of transverse electric (TE) polarisation and unit
amplitude. The incident field propagates in the negative x di-
rection, and is normally incident on the grating. The operat-
ing wavelength λ is 633 nm, corresponding to illumination
by a HeNe laser. The dimensions of the grating on the sur-
face of the scatterer are 1 λ × 0.5 λ. It is desired to determine
the length of one specific defective protrusion on the scatterer
based on the measurement of the power in the scattered far
field. The far field data are assumed available in the angle
range of ±30◦ from normal incidence, as shown in Figure 4.
The auxiliary sources and the testing points shown in Figure 4
are not part of the physical setup discussed here; these are de-
scribed in Section 4.

4 SOLUTION OF THE INVERSE PROBLEM

The proposed method consists of four steps. The main idea is
to identify the topology of the scatterer with the set of auxil-
iary sources that radiate the best approximation of the mea-
sured scattered far field power pattern. The first two steps

30o

30o

Sin  =3.874+i0.015

νx’

xμ
defect

silicone

sources
auxiliary

testing
points

air

incident
field

iH

E iλ

λ/2
λ/2

y

x

FIG. 4 The type of grating defect to be characterised.

build a library of solutions of reference direct scattering prob-
lems, and are only performed once. The last two steps need to
be performed for the solution of each particular inverse scat-
tering problem, i.e., after each particular ODM measurement.

The first step is to solve a number (say M) of direct scattering
problems numerically. Each of the scattering problems mod-
els an ODM measurement and features a well-defined per-
turbation of the defect-free topology of the scatterer. For the
nano grating of Section 3, a total of 17 direct scattering prob-
lems are solved, the length of the defective protrusion tak-
ing successive values from 0 to 2λ, with steps of 0.125λ. The
resulting scattered fields, both near (Es,near

j ) and far (Es, f ar
j ),

j = 1, ..., M, are stored in a library. Figure 5 shows the am-
plitude of one such scattered near field. We use the com-
mercially available FEM software package COMSOL Multi-
physics [18, 19] to solve the direct scattering problems.

In the second step, each stored near field is approximated by
a field

EMAS,near
j (x) =

N

∑
ν=1

C(j)
ν H(2)

0 (k
∣∣x− x′ν

∣∣) (9)

radiated by a set of N auxiliary sources in free space. The
sources are represented by their locations x′1, . . . , x′N and by

their complex amplitudes C(j)
1 , . . . , C(j)

N , j = 1, . . . , M. To sim-
plify this part of the procedure, the number of sources and
their locations are here fixed: for the nano grating example, we
choose N = 200 and place the auxiliary sources at the points
x′1, . . . , x′N uniformly distributed on a circle of radius 9λ, as

sketched in Figure 4. The complex amplitudes C(j)
1 , . . . , C(j)

N
are calculated by point matching in the near field; in the nano
grating example, the testing points are distributed uniformly
on a circle of radius 9.5λ, as sketched in Figure 4. As men-
tioned in Section 2, the field radiated by source number µ is

FIG. 5 The amplitude of the scattered near field for the defect-free scatterer, computed

in COMSOL Multiphysics.
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proportional to the radial outgoing fundamental solution of
the Helmholtz operator in the plane, with singularity at x′µ,

that is, to the Hankel function H(2)
0 (k| · −x′µ|) of zero order and

of the second kind. For each j = 1, . . . , M, the (normalised)
complex amplitudes are found by solving the linear system

N

∑
ν=1

C(j)
ν H(2)

0 (k|xµ − x′ν|) = Es,near
j (xµ), µ = 1, . . . , N. (10)

The distribution of the auxiliary sources and testing points
shown in Figure 4 yields relatively good numerical stability.
The resulting condition number for the system Eq. (10) is of
the order 105, and the moduli of the obtained complex ampli-

tudes C(j)
1 , . . . , C(j)

N are of the order 101. The normalised near-
field error √√√√√√∑

∣∣∣Es,near
j − EMAS,near

j

∣∣∣2
∑
∣∣∣Es,near

j

∣∣∣2 (11)

is of the order 10−4, and the normalised far-field error√√√√√√∑
∣∣∣|Es, f ar

j | − |EMAS, f ar
j |

∣∣∣2
∑
∣∣∣Es, f ar

j

∣∣∣2 (12)

is found to be of the order 10−3 in the angle range ±30◦ from
normal incidence. The MAS far field EMAS, f ar

j is here given by

EMAS, f ar
j (φ) =

1 + i√
πk

N

∑
ν=1

C(j)
ν exp

(
ik|x′ν| cos(φ− φ′ν)

)
, (13)

where φ is the observation angle and φ′ν the angular co-
ordinate of the auxiliary source no. ν. Better approximation
of the fields can be achieved by using more than 200 auxiliary
sources and matching points.

The complex amplitudes of the sources are added to the li-

brary as vectors C(j) = (C(j)
1 , . . . , C(j)

N ) representing the re-
spective scatterer defects. In the third step of the proposed
method, the actually measured far-field amplitude |Em, f ar|
is matched with the library entries |Es, f ar

j |. A library entry

|Es, f ar
k | is identified that minimises a distance functional of the

form ∑
∣∣∣|Em, f ar| − |Es, f ar

j |
∣∣∣2. For the nano grating example, all

measured fields are simulated numerically, and the matching
of measured and library fields is done over the angle inter-
val of ±30◦ from normal incidence. A total of 960 uniformly
distributed far-field matching points are used; it is probably
possible to use significantly fewer matching points with only
a very small decrease in the accuracy of the method. Since the
field Es, f ar

k is associated with a well-defined perturbation of
the scatterer, the far-field matching gives the first, ’coarse’ so-
lution of the inverse problem. This solution is refined by piece-
wise linear interpolation: the functionals

∑
∣∣∣|Em, f ar| − |(1 + t)Es, f ar

k − tEs, f ar
k−1 |

∣∣∣2 (14a)

and ∑
∣∣∣|Em, f ar| − |(1− t)Es, f ar

k + tEs, f ar
k+1 |

∣∣∣2 (14b)

Cstart

Copt

C(k−1)

C(k)

C(k+1)piecewise linear

final interpolation

interpolation

FIG. 6 Interpolating the sets of auxiliary sources.

are minimised with respect to t ∈ [−1, 0] and t ∈ [0, 1], respec-
tively. It is here assumed that the library entries are sufficiently
close such that the overall best value of t can be interpreted as
a linear measure of the perturbation of the scatterer. For the
nano grating example, a best far field match corresponding
to the perturbation of −0.25λ and the best value of t found
to be 0.296 results in the estimate −0.25λ + 0.125λ · 0.296 =
−0.213λ for the perturbation.

In the final, fourth step of the proposed method, the auxil-
iary source amplitude vector Cstart = (1 + t)C(k) − tC(k−1) (or
Cstart = (1− t)C(k) + tC(k−1), depending on the sign of the
best t) is calculated using the above best values of t and k.
Also, Gram-Schmidt orthonormalisation is performed on the
set {C(1), . . . , C(M)} to obtain an orthonormal basis

{
vj
}

of
the d-dimensional real subspace of CN spanned by the library
source amplitude vectors (it holds that d ≤ min{M, 2N}). Fi-
nally, the vector Cstart is used as the starting guess in the min-
imisation of the functional ∑

∣∣|Em, f ar| − |EMAS, f ar
s1,...,sd |

∣∣2 with re-

spect to the reals s1, . . . , sd. Here, EMAS, f ar
s1,...,sd is the far field ra-

diated by the set of auxiliary sources described by the am-
plitude vector C(s1, . . . , sd) = Cstart + ∑ sµvµ and located at
x′1, . . . , x′N :

EMAS, f ar
s1,...,sd (φ)=

1+i√
πk

N

∑
ν=1

Cν(s1, . . . , sd) exp
(
ik|x′ν| cos(φ−φ′ν)

)
.

(15)
For the nano grating example, we employ the freely available
Ipopt optimisation software [20] to find the 17 coefficients sµ

(in contrast, 400 optimisation parameters would be needed
for direct optimisation with respect to the real and the imag-
inary parts of the complex amplitudes of the 200 auxiliary
sources used in the nano grating example). We use uncon-
strained optimisation with a maximum of only 5 iterations,
and the process takes about 30 sec of CPU time (the objective
and gradient functions are implemented in MATLAB). This
optimisation shows numerical convergence, so better overall
results might be achieved with more iterations. After an opti-
mum amplitude vector Copt is found, a second-degree poly-
nomial of one real variable and with values in CN is con-
structed such that it successively intersects the points C(k−1),
Copt and C(k) if the above best t is nonpositive, or the points
C(k), Copt and C(k+1) if t > 0 (see Figure 6 for an illustra-
tion). The perturbation in the scatterer is now estimated us-
ing relative lengths of the relevant curve segments traced in
CN by the polynomial interpolant. For the above nano grating
with t = 0.296, the lengths of the curve segments between
C(7) and Copt, as well as between C(7) and C(8), are 20.21
and 65.68, respectively, and the perturbation is estimated to
be −0.25λ + 0.125λ · 20.21/65.68 = −0.2115λ.
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actual
perturbation

far-field
estimate

estimate
after

interpolation

estimate
after

optimisation
-0.2000 -0.2500 -0.2181 -0.2163
-0.1875 -0.2500 -0.2130 -0.2115
-0.0500 0.0000 -0.0012 -0.0254
0.1000 0.1250 0.1260 0.1528
0.2000 0.2500 0.2948 0.2954
0.3125 0.3750 0.3750 0.3491
0.4000 0.3750 0.3750 0.3499
0.6100 0.6250 0.6249 0.5998
0.6875 0.6250 0.6345 0.6546
0.8125 0.8750 0.8750 0.8360
0.9000 0.8750 0.8925 0.9030

TABLE 1 Actual perturbations and estimates.

It is seen from Eq. (13) that the initial, piecewise linear inter-
polation of the far fields can be understood as an approximate
piecewise linear interpolation between the auxiliary source
vectors C(k−1), C(k) and C(k+1), since, e.g.,

(1+t)Es, f ar
k (φ)−tEs, f ar

k−1 (φ) ≈

1+i√
πk

N

∑
ν=1

(
(1+t)C(k)

ν −tC(k−1)
ν

)
exp

(
ik|x′ν| cos(φ−φ′ν)

)
. (16)

This is why we indicate the linear interpolation in Figure 6.
Also, while the library matching and the subsequent piece-
wise linear interpolation are done directly on the far field data,
without any use of a MAS formulation, the final optimisa-

tion generally changes the individual parameters C(j)
ν inde-

pendently of each other; thus the last step indeed makes use
of the MAS expansion of the scattered field.

5 NUMERICAL RESULTS

Tables 1, 2 and 3 summarise the numerical results obtained
for the nano grating example. The ’after interpolation’ col-
umn refers to the initial, piecewise linear interpolation. The
column labeled ’after optimisation’ refers to the final step of
the proposed method, where a MAS-formulated optimisation
problem is solved and where second-order interpolation is
used. All values in Table 1 are given in wavelengths λ and
are rounded to 4 decimal places. A perturbation of −0.2λ cor-
responds to the case where the defective protrusion is 0.8λ

long, and similarly for the other values. In Table 2, the error
in the j’th estimate l̃j of the actual perturbation lj is calculated
as ε j = 100(l̃j − lj), if both lj and l̃j are given in wavelengths
λ. The ’standard deviation’ is calculated as σ = (∑ ε2

j /11)1/2.
Both values are rounded to 2 decimal places. In Table 3 the
far-field error after library matching is found as

100 ·
√

∑
∣∣∣|Em, f ar| − |Es, f ar

k |
∣∣∣2 / ∑

∣∣Em, f ar
∣∣2, (17)

and similarly for the other two error columns. With the
present resolution of the library, the far field matching results
in reasonable initial guesses in all 11 cases. The error in the
resulting estimates does not exceed 10% of the wavelength λ,
and this is also the case for the interpolation and optimisa-
tion data sets. The subsequent piecewise linear interpolation

actual
perturbation

error / λ (%)
after library

matching

error / λ (%)
after

interpolation

error / λ (%)
after

optimisation
-0.2000 -5.00 -1.81 -1.63
-0.1875 -6.25 -2.55 -2.40
-0.0500 5.00 4.88 2.46
0.1000 2.50 2.60 5.28
0.2000 5.00 9.48 9.54
0.3125 6.25 6.25 3.66
0.4000 -2.50 -2.50 -5.01
0.6100 1.50 1.49 -1.02
0.6875 -6.25 -5.30 -3.29
0.8125 6.25 6.25 2.35
0.9000 -2.50 -0.75 0.30
average
absolute

value
4.45 3.99 3.36

standard
deviation

4.79 4.72 4.15

TABLE 2 Errors in the estimates.

actual
perturbation

far-field
error (%)

after
library

matching

far-field
error (%)

after
interpolation

far-field
error (%)

after
optimisation

-0.2000 24.76 15.88 9.88
-0.1875 25.66 16.11 10.27
-0.0500 7.51 7.51 2.84
0.1000 7.01 6.90 4.68
0.2000 11.81 9.69 1.73
0.3125 5.97 5.97 3.00
0.4000 2.42 2.42 0.89
0.6100 1.36 1.36 0.48
0.6875 8.48 8.47 3.80
0.8125 20.69 20.69 5.37
0.9000 4.23 3.97 1.57
average
absolute

value
10.90 9.00 4.05

TABLE 3 Error in the reconstructed far-field amplitude relative to the measured far

field.

reduces both the average absolute value and the standard de-
viation of the error in the estimates. Also, in all 11 considered
cases, the far-field error after the initial interpolation is either
less than or equal to the far-field error obtained after library
matching. Use of the MAS-formulated optimisation, and the
subsequent second-degree polynomial interpolation, further
reduces the far-field error, the average absolute value of the
estimate error, and the standard deviation of the estimate er-
ror. Compared to the interpolation estimates, the magnitude
of the error is reduced in 8 of the shown 11 cases. Of course,
the scatterer perturbations directly represented in the library
are measured with zero error, which in principle improves the
overall accuracy estimate for the method. However, we must
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also point out the fluctuation in the magnitude of the estimate
error from case to case.

6 CONCLUSIONS AND FURTHER WORK

It was here demonstrated that the MAS can be used in an
ODM setting for efficient measurement of non-periodic de-
fects on nano scale. The method was tested on a concrete rel-
evant inverse problem, where the elongation of a specific pro-
trusion in a nano-scale grating was estimated. A MAS-based
optimisation resulted in a lower average absolute value and
a lower standard deviation of the estimate error, compared to
simple piecewise linear interpolation of the far fields.

The presented numerical implementation involves implicit
choices for many different parameters, and its performance
can therefore likely be further improved. We do not claim here
that the implementation is optimal; its purpose is solely to
demonstrate the feasibility of the proposed approach to the
inverse problems that occur in ODM.

Regarding further work, we mention that all three sets of esti-
mates (matching, interpolation and optimisation) show statis-
tically significant errors for several perturbations in the range
from −λ to −0.3λ; further investigation is thus needed for
geometries where the perturbation is ’buried’ in the scatterer
structure. It is also of interest to test the proposed method on
the nano grating inverse problem in the transverse magnetic
(TM) case. Furthermore, the effect of measurement noise on
the accuracy of the method needs to be investigated. In gen-
eral, the choice of the location of the auxiliary sources can sig-
nificantly influence the well-posedness of the final optimisa-
tion problem, and it is of interest to find favourable auxiliary
source distributions, dependent on the considered scatterer,
that make the method numerically stable and that even im-
prove its accuracy. Next, it might be useful to investigate the
effect of resonances induced in the measured structures on the
performance of the method. Finally, it is relevant to generalise
the presented method to three-dimensional, polychromatic,
time-domain measurements.
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