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The reported occurrence of multiple solutions in the inversion of remote sensing reflectance, Rrs, signals is of considerable significance for
attempts to recover the concentrations of optically significant materials (OSMs) in shelf seas. The severity of this problem was assessed by
quantifying the number of matches between individual multi wavelength remote sensing “observations” and the entries in a pre-computed
look-up table (LUT) spanning the range of possible observations. As a simplifying step, radiative transfer modeling was used to confirm the
existence of a linear relationship between Rrs in the visible wavebands and the ratio of the backscattering to absorption coefficients, bb/a
over the full range of OSM concentrations likely to be found in shelf seas. This meant that an LUT of appropriate size and resolution could
be constructed from bb/a vectors rather than Rrs spectra, with a considerable saving of computational effort. The number of matches in
the LUT was then determined as a function of the degree of noise present in the observation and the strictness of the matching criterion
(a simple least-squares fitting routine). Perfect matching for the six visible wavebands of the SeaWiFs satellite radiometer was achieved
only when the “observed” bb/a vector was represented exactly in the library. The introduction of noise representing observational errors
rapidly led to multiple matches, as did relaxation of the matching criterion. As an example of the sensitivity of OSM recovery to errors of
observation, it was found that an average error of 0.1%, statistically distributed across all wavebands, led to an average recovery error of
6.4% in CHL for 3000 randomly selected observations. [DOI: 10.2971/jeos.2010.10018s]
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1 INTRODUCTION

Optical remote sensing using satellite-borne radiometers has
become an important tool for studying biological and physi-
cal processes in ocean basins [1, 2], and is recognized as be-
ing potentially of great value for monitoring the changing sta-
tus of coastal waters and shelf seas [3]. Unfortunately, remote
sensing algorithms derived using global data sets are not reli-
able when applied to waters subject to terrestrial influence [4].
The problem was foreseen over 30 years ago by Morel and
Prieur [5], who drew a distinction between waters where op-
tical variability is correlated with phytoplankton population
density and those where this correlation is disrupted by the
presence of a wider range of optically significant materials
(OSMs). Shelf seas generally fall into the latter category. In the
simplest analysis, OSMs fall into three classes: phytoplank-
ton cells (measured as chlorophyll concentration, CHL), sus-
pended mineral particles (measured as the dry weight of min-
eral suspended solids per unit filtered volume, MSS) and dis-
solved coloured organic material (measured as the absorption
coefficient of filtered samples at 440 nm, CDOM). The prob-
lem of inversion in marine remote sensing consists of deriving
OSM concentrations from measurements of remote sensing re-
flectance, Rrs, in the visible waveband. It appears at first sight
to be a reasonably tractable one, since Rrs values under typi-
cal satellite imaging conditions (high viewing angles and clear
skies) are mainly determined by the inherent optical proper-
ties (IOPs) of the water column which are linear functions of
OSM concentrations over the range of interest. A minimal set

of determining IOPs consists of the coefficients of absorption
a, and scattering b and the volume scattering function β, all of
which are functions of wavelength, λ. In numerical models, β

is often approximated by a generic scattering function, param-
eterised to reproduce the required scattering to backscattering
ratio, bb/b [6, 7].

Water column IOPs can be expressed as the sum of the prod-
ucts of the concentrations of the OSMs and their specific in-
herent optical properties (SIOPs), which are generally desig-
nated in the form a∗, b∗, etc. For example, the total absorption
coefficient a is given by

a= aw+(a∗chl×CHL) + (a∗mss×MSS)+ (a∗cdom×CDOM) (1)

where w refers to pure water, and the other terms are as previ-
ously defined. It has long been known that the irradiance re-
flectance just below the sea surface, R, is a single valued func-
tion of the coefficients of backscattering, bb, and absorption,
a [6, 7]. For remote sensing reflectance, Rrs, defined as the ra-
tio of the water leaving radiance to the downward irradiance
just above the sea surface

Rrs =
(1− rF) fL,β

n2Q
× bb

a
= G

×
bb,w+(b∗b,chl×CHL)+(b∗b,mss×MSS)+(b∗b,cdom×CDOM)

aw+(a∗chl×CHL)+(a∗mss×MSS)+(a∗cdom×CDOM)
.

(2)
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The factor fL,β in Eq. (2) depends on the radiance distribu-
tion L and the volume scattering function of the water β, Q
is the ratio of upwelling irradiance to radiance, rF is the Fres-
nel reflectance at the air/water interface and n is the refrac-
tive index of seawater [8]. For conditions where L and β are
held constant, G is the gradient of the linear relationship be-
tween Rrs and bb/a. One important consequence of the occur-
rence of a ratio on the right hand side of Eq. (2) is that spectral
unmixing techniques, which are successfully used in terres-
trial remote sensing [9], cannot be applied to marine water
columns because remote sensing reflectances do not respond
linearly to changes in the concentrations of the non-water con-
stituents. A range of approaches to the remote sensing inver-
sion problem have been formulated in the form of neural net-
works [10], site specific algorithms [11] and “semi-analytical”
algorithms [12, 13]. However, for Case 2 waters, no robust and
generally applicable solutions have been found. One promis-
ing method which has not been fully explored is spectrum
matching, in which an observed spectrum is matched to a set
of possible OSM concentrations by querying a comprehensive
look-up table [14, 15]. This immediately raises the question of
whether the inversion problem is well conditioned: that is, is
there a unique relationship between particular combinations
of material concentrations and the resulting remote sensing
reflectances? Inspection of Eq. (2) indicates that this is not
the case if only a single reflectance waveband is considered.
The question was addressed for simultaneous observations
in multiple wavebands in a pioneering paper by Defoin-Patel
and Chami [16], who concluded that solutions of the inverse
problem in optically complex shelf seas were frequently multi-
valued. However, the methodology used by these authors was
based on statistical sampling of an extensive field data set [17],
and did not identify whether the ambiguity arose from intrin-
sic multiple solutions, real variability in the specific IOPs, or
possible errors of observation. Consequently, the present pa-
per explicitly examines the potential origins of ambiguity in
solutions to the Rrs inversion problem in optically complex
seas.

2 METHODS

The obvious way to tackle the problem would be to create
a look-up table (LUT) of Rrs spectra from radiative transfer
calculations covering the range of OSM concentrations likely
to be found in shelf seas, and then search it to find matches
to ‘observed’ spectra. However, the quality of the matches
achieved depends on the spacing of the LUT entries, and the
construction of a table with sufficient resolution to be useful in
practice would require a very large number of radiative trans-
fer calculations. A solution to this problem can be found in
the relationship between bb/a andRrs displayed in Eq. (2): if
the constant G is known as a function of wavelength, then ob-
served Rrs values are uniquely mapped on to bb/a values. It
is then only necessary to generate an LUT of bb/a vectors in
wavebands matching those of the Rrs observations, and this is
easily calculated from the products of the OSM concentrations
and SIOPs.
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FIG. 1 Hydrolight radiative transfer calculations of the relationship between remote

sensing reflectance, Rrs, and the backscattering to absorption ratio, bb/a, for all

wavebands listed in Table 1 and OSM concentrations listed in Section 2.1.

2.1 Val idation of Eq. (2)

SIOPs in the seven visible wavebands used by the SeaWiFs
satellite radiometer were derived from in situ measurements
of optical properties and seawater composition in the Irish
and Celtic Seas, using the methodology documented in [18].
It was necessary to interpolatate between measurements to
match the wavebands used in the model, and the results are
listed in Table 1. These values were incorporated in radia-
tive transfer calculations using the Hydrolight software pack-
age [7] in order to validate the applicability of Eq. (2), and inci-
dentally determine appropriate values for G in SeaWiFs wave-
bands. The calculations were carried out for a solar zenith an-
gle of 45◦, an infinitely deep water column, wind speed of 3.1
ms−1 and zero cloud cover. They covered the range of con-
stituent concentrations and combinations that might normally
be found in a tidally stirred shelf sea, with CHL ranging from
0 mg/m3 to 20 mg/m3, MSS from 0 g/m3 to 20 g/m3 and
CDOM (as a440) from 0 m−1 to 1 m−1. For each constituent,
the range was divided into 10 equal increments. All possible
combinations including null values were examined, giving a
total of 1331 radiative transfer calculations.

The results, which are illustrated in Figure 1, confirmed the
linear relationship between bb/a and Rrs in Eq. (2) for all
wavebands and the full range of OSM concentrations. The
gradient of the lines varied slightly with wavelength due to
spectral variation in the bb/b ratio used to generate the scat-
tering phase function. Linear least-squares fits to the data gave
G values of 0.046 at 412 nm; 0.048 at 443 nm; 0.049 at 489 nm;
0.050 at 510 nm; 0.051 at 555 nm; 0.052 at 665 nm and 0.052
at 700 nm. The associated coefficients of determination were
above 0.99 in all cases.

2.2 Construction of a look-up table of bb/a
vectors

The LUT was calculated using expressions of the form shown
in Eq. (1) to generate total bb and a values from the SIOPs
listed in Table 1. In this case OSM concentration ranges were
restricted to 0 mg/m3 to 10 mg/m3 for CHL, 0 g/m3 to
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Band Water CHL MSS CDOM
(nm) a∗ b∗b b∗ a∗ b∗b b∗ a∗ b∗b b∗ a∗

413 0.005 0.0035 0.0067 0.036 0.0012 0.0509 0.071 0.0154 0.3134 1.556
443 0.007 0.0026 0.0048 0.038 0.0012 0.0395 0.057 0.0145 0.3226 0.969
489 0.015 0.0017 0.0031 0.025 0.0012 0.0464 0.041 0.0133 0.3305 0.503
510 0.033 0.0016 0.0026 0.020 0.0011 0.0482 0.035 0.0127 0.3340 0.386
555 0.059 0.0012 0.0019 0.011 0.0011 0.0544 0.022 0.0115 0.3340 0.226
665 0.425 0.0005 0.0008 0.024 0.0011 0.0435 0.005 0.0086 0.3435 0.036
700 0.624 0.0003 0.0007 0.013 0.0011 0.0516 0.001 0.0077 0.3428 0.009

TABLE 1 Specific inherent optical properties for pure seawater and the three optically significant materials at SeaWiFs wavebands.

10 g/m3 for MSS and 0 m−1 to 1 m−1 for CDOM. Entries were
spaced at numerical intervals of 0.1 for CHL and MSS and 0.01
for CDOM. The resulting table of bb/a vectors for all possible
combinations of the three OSM concentrations had 1,030,301
entries.

2.3 Spectrum matching

The matching of six-waveband “observed” vectors with en-
tries in the LUT was based on the calculation of the root mean
square error (RMSE) averaged over all wavebands. This mea-
sure of spectral distance differs from the one used by Defoin-
Platel and Chami [16], who calculated the maximum frac-
tional difference waveband by waveband. For a single ob-
served vector, the calculation of all RMSE values took a few
seconds using MATLAB on a desktop computer: the time re-
quired could be significantly reduced by optimising the soft-
ware used. There are, however, two obvious problems asso-
ciated with the practical application of LUTs. First, errors of
measurement might corrupt the observed vector and lead to
spurious matches. Second, since any LUT has finite resolution,
the observed vector might occupy a gap between entries in the
table. Errors of measurement were simulated in this study by
adding Gaussian noise independently to each waveband with
a mean equal to the “true” value and a standard deviation that
was varied as a test of sensitivity. The effect of limited LUT res-
olution was investigated by relaxing the matching criteria to
accept all library entries within a cluster defined by a variable
RMSE rather than simply choosing the RMSE closest to zero.

3 RESULTS

3.1 The effect of measurement errors and
acceptance criter ia on the number of
matches returned

One hundred bb/a vectors were selected at random from the
LUT and perturbed by a varying degree of noise applied in-
dependently to each waveband. The noise level was selected
from a Gaussian distribution whose mean was equal to the
initial bb/a value and whose standard deviation was set at a
variable percentage (0% to 5%) of the mean. 5% corresponds
to the target uncertainty for the recovery of water-leaving ra-
diances from SeaWiFs and MODIS observations, but this fig-
ure is exceeded by at least a factor of two in practice [19]. The
quality of the matches in the LUT was assessed by calculating
the RMSE for the bb/a vector averaged over all wavebands.
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FIG. 2 Number of matches returned within a given acceptance interval (RMSE) for bb/a

vectors to which Gaussian noise had been added in the range 0% to 5%.

Matches were generated with acceptance criteria increasing
from 0 to 0.01 RMSE in steps of 0.0001. Figure 2 shows the
combined effect of noise and acceptance tolerance on the num-
ber of bb/a vectors recovered by the matching process as an
average for the 100 spectra used in the test. If an exact replica
of the observed spectrum was found in the library, then only
one match was returned with the minimum RMSE. This was
an important result, which (i) indicated that no intrinsic ambi-
guity was found in the six-waveband matching process, and
(ii) confirmed that there was a unique relationship between
bb/a vectors and the OSM concentration triplets used to gen-
erate the LUT. The number of potential matches increased
rapidly as the acceptance tolerance was increased (an RMSE of
0.0024 produced 618 matches for noise-free spectra). The addi-
tion of random noise to the “observed” spectrum reduced the
number of matches produced for a given acceptance interval
because a higher proportion of the modified spectra fell out-
side the acceptance criteria. Quantifying the number of bb/a
matches did not, however, give any indication of the quality
of OSM concentration recoveries that could be achieved and
this is explored further below.

3.2 The effect of errors of observation on
the recovery of OSM concentrat ions

For brevity, the recovery of CHL concentrations is used as an
example in this section; other OSMs followed a very similar
pattern. A set of 100 bb/a vectors was selected at random from
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FIG. 3 Degradation in CHL recovery as noise is added to the observed bb/a vector with

standard deviations (from left to right) of 0.2%, 0.4% and 0.6% of the mean value. For

each recovery, the LUT match with the lowest RMSE was selected.
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FIG. 4 Variation in the average percentage error in CHL recovery for 3000 randomly

selected spectra as the standard deviation of the added noise increases.

the LUT and noise added to each waveband as described in
Section 3.1. The LUT was then searched and the match with
the lowest RMSE for each vector accepted. Given the unique
mapping of OSM concentration triplets on bb/a vectors, the
recovery of OSM concentrations became a trivial operation.
Figure 3 illustrates the degradation in accuracy of CHL recov-
ery in response to added noise for 100 randomly selected bb/a
vectors. Perfect recoveries were achieved when zero noise
was added. The average RMSE values for the 100 “observa-
tions” provide a useful measure of the quality of the matches
achieved. Values were 0.00026, 0.00043 and 0.00063 for stan-
dard deviations of 0.2%, 0.4% and 0.6%, respectively.

In order to gain a clearer picture of the significance of errors of
observation for the inversion process, a total of 3000 entries in
the LUT were chosen at random, degraded by the addition of
noise as previously described, and then subjected to the least-
squares matching procedure. Figure 4 shows how the average
percentage error in CHL recovery increases with the standard
deviation of the added noise, expressed as a percentage of the
undegraded value; the line drawn through the points is of the
form y = 11.4 ln(x) + 34.

4 DISCUSSION AND CONCLUSIONS

Two main approaches are employed for the retrieval of OSM
concentrations from Rrs spectra. One derives relationships be-

tween Rrs features (such as band ratios) and OSM values by
applying statistical regression techniques to large data sets.
The other, which is investigated here, is based on matching Rrs
spectra to entries in a reference library created using a predic-
tive model. This paper demonstrates that the use of an LUT
based on bb/a vectors offers an efficient means of assessing
the performance of the spectral matching approach. There was
no ambiguity in matching retrievals for a noise-free bb/a vec-
tor, but the introduction of statistical variability very rapidly
degraded the matching process. Two sources of uncertainty
were considered; (i) the addition of Gaussian noise to the ob-
servations and (ii) relaxation of the magnitude of the RMSE
error accepted. It was important to determine whether the in-
troduction of a small amount of noise or modest relaxation
of the matching criteria led to a catastrophic failure in con-
centration retrievals or simply to a gradual and proportionate
reduction in quality. This is equivalent to the question posed
by Defoin-Platel and Chami regarding the shape of the “spec-
tral neighborhood”. Figures 3 and 4 show that on average,
degradation in OSM retrieval is gradual for small noise ad-
ditions - in other words, most wrongly identified vectors are
associated with OSM triplets which are close to the real val-
ues. However, the quality of retrieval degrades very rapidly as
noise levels increase. We conclude that the general problem of
deriving unambiguous OSM concentrations from SeaWiFs re-
mote sensing spectra in shelf seas which contain a wide range
of independently varying OSM concentrations is unlikely to
be achievable by spectral matching techniques. It is possible,
however, that the number of acceptable solutions to the in-
version problem can be reduced a priori by the availability
of ancillary information. For example, there may be regions
where only a restricted range of OSM concentrations is phys-
ically feasible, where particular constituents such as MSS or
CDOM dominate the spectral signature, or where a histori-
cal time series can be used to constrain solutions. Since ma-
rine reflectance spectra are generally devoid of distinctive fea-
tures (with the exception of the chlorophyll fluorescence peak
at around 685 nm), our conclusion can probably be extended
to other multi-band radiometers such as MODIS (NASA) and
MERIS (ESA). For hyperspectral observations, the increased
definition of the chlorophyll fluorescence peak may provide
an alternative route to OSM concentration recovery.
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