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Using complex plane analysis we show that left-handed slab may support either leaky slab waves, which are backward because of negative
refraction, or leaky surface waves, which are backward or forward depending on the propagation direction of the surface wave itself.
Moreover, there is a general connection between the reflection coefficient of the left-handed slab and the one of the corresponding
right-handed slab (with opposite permittivity and permeability) so that leaky slab modes are excited for the same angle of incidence
of the impinging beam for both structures. Many negative giant lateral shifts can be explained by the excitation of these leaky modes.
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1 INTRODUCTION

Left-handed materials [1] have long been considered a theo-
retical oddity. Since it has been demonstrated that they could
be produced using metamaterials [2], they have attracted
much attention. The basic physics of left-handed materials
(LHM) is truly exotic and has been completely ignored un-
til recently, it renews the physics of lamellar structures to the
extend that a bare slab of LHM exhibits many surprising prop-
erties : it can for instance support unusual guided modes [3, 4]
or behave as a perfect lens [5]. In this paper, we study the ex-
otic properties of the different types of leaky waves supported
by a left-handed slab. Given the importance of the left-handed
slab for both fundamental and applied works, there is obvi-
ously a need for a clear understanding of these properties.

We particularly show that two types of leaky waves are sup-
ported by such a structure (i) leaky slab waves which are al-
ways backward due to negative refraction and (ii) leaky surface
waves which do not exist for a right-handed slab and which
can be backward or forward. The excitation of these modes
leads to positive or negative giant lateral shifts, the latter be-
ing rather exotic [6].

2 LEAKY MODES AND GIANT LATERAL
SHIFTS

A leaky mode [6] is a solution of the wave equation which
satisfies the dispersion relation of a structure but with a prop-
agative solution above and (or) under the structure. Whereas a
guided mode has a real propagation constant, the propagation
constant of a leaky mode is complex because the energy of the
waves leaks out of the structure and the waves is attenuated.
A leaky wave is thus a complex solution of the dispersion re-
lation and a complex plane analysis is thus particularly rele-

vant for a thorough analysis of its properties. Let us underline
that a leaky mode may be either forward, which is common,
or backward, leading to a propagation constant which has a
positive (respectively negative) imaginary part.

Let us consider a slab characterized by ε2 and µ2 surrounded
by right-handed media with ε1 and µ1 (resp. ε3 and µ3) above
(resp. under) the slab as shown in Figure 1. The values we
have chosen for ε2 and µ2 are arbitrary but realistic [7] so that
this structure could be realized using split-ring resonnators
and wires.
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FIG. 1 The LHM slab of thickness h surrounded by right-handed media.

We may assume that ε1 µ1 ≥ ε3 µ3 with no loss of generality.

The relation dispersion of such a structure can be written

r21 r23 = exp(−2iγ2 h) (1)

where γi =
√

εi µi k2
0 − α2, k0 = ω

c = 2π
λ and rij =

κi−κj
κi+κj

with

κi = γi
µi

in TE polarization (or κi = γi
εi

in TM polarization).
Since ε1 µ1 ≥ ε3 µ3 and we are concerned with leaky waves,
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we will only consider values of α such that α <
√

ε1 µ1 k0,
which means that the solution will always be propagative at
least in medium 1.

Let us now consider the reflection coefficient of a plane wave
exp(i(α x + γ z−ω t)) coming from upwards with an angle of
incidence θ so that α = n k0 sin θ. Its reflection coefficient can
be written

r =
r23 exp(2iγ2 h)− r21

1− r21 r23 exp(2iγ2 h)
(2)

using the above definitions.

It is obvious that when the dispersion relation is satisfied, then
the reflection coefficient presents a pole. A leaky mode thus
corresponds to a pole of the reflection coefficient. A zero, lo-
cated on the other side of the real axis, corresponds to each
pole. As we will see in the following, a zone where the phase
of r quickly varies lies between a pole and its corresponding
zero. This zone crosses the real axis, so that the presence of a
pole is responsible for a swift variation of the phase on the real
axis.

When considering the reflection of a gaussian beam on a struc-
ture whose reflection coefficient has a modulus equal to one
(so that it can be written r = eiφ), the lateral displacement of
the reflected beam’s barycenter along the interface is given by
the well known formula

δ = −dφ

dα
. (3)

This lateral displacement is the sign that a leaky wave has
been excited by the incident beam. The reflected beam then
has two components : the part which is reflected by the first
interface of the structure (whose barycenter is not particularly
displaced) and the leaky wave itself [6]. The reflected beam is
heavily distorted by the leaky wave and presents an exponen-
tially decreasing tail so that its barycenter is largely displaced :
this is the so-called giant lateral shift.

This effect is sometimes called a giant Goos-Hänchen effect,
but in this case the shift is due to the excitation of a leaky mode
[6] and not, as in the real Goos-Hänchen effect [8, 9], to the
total reflection.

3 THE LEFT-HANDED SLAB

With left-handed materials, though, negative lateral shifts
seem to be much more common [10]-[14] than once expected
[6]. Here we will consider the case of a left-handed slab (i.e.
if ε2 < 0 and µ2 < 0) and explain why the leaky modes sup-
ported by such a structure are usually backward. Our expla-
nations will be supported by a complex plane analysis of the
leaky modes.

Here Eq. (2) for the reflection coefficient remains perfectly
valid. We will now distinguish two cases : the case when the
solution is propagative in the left-handed medium and the
case when the solution is evanescent in region 2.

3.1 Leaky slab modes

When the field is propagative in the left-handed slab, large
negative lateral shifts have been reported but not interpreted
[13]. These shifts are due to the excitation of leaky slab modes
or Perot-Fabry resonances of the slab at non normal incidence.
Such leaky modes have already been studied for a right-
handed slab [15] and they can be considered as constructive
interferences of the multiple beams which are produced by
reflections on the interfaces of the slab. In the case of a left-
handed slab, since the first beam undergoes a negative refrac-
tion as shown in Figure 2 these constructive interferences will
logically generate a backward leaky mode. We may thus con-
clude that the existence of such a backward leaky mode is linked to
negative refraction.

FIG. 2 Modulus of the field for a thick left-handed slab with ε1 = ε3 = µ1 = µ3 = 1,

ε2 = −3, µ2 = −1 and h = 60 λ using a gaussian incident beam with a waist of

20 λ and an incidence angle of θ = 45◦.

This argument is not a proof though : unexpected lateral shifts
have been reported when the beams interfere destructively
[16]. But if the leaky modes are backward, then the corre-
sponding solutions of the dispersion relation and the poles
of the reflection coefficient should have a negative imaginary
part. This is what is shown in Figure 3.

FIG. 3 The phase of the reflection coefficient in a part of the complex plan [0, n1 k0] +

i[− k0
π , k0

π ]. Each black point represents a pole and each white point a zero. The cut

line is clearly visible here. The rapid variation of the phase which is due to each pole

is obvious.

Two types of leaky slab waves should be distinguished (i) L2
waves which are leaky in both the upper and the lower media
and (ii) L1 waves which are leaky only in the upper medium
and evanescent in the lower one. The latter correspond to the
poles located under the cut line.

Using complex plane analysis we will now try to show that all
the solutions of the dispersion relation (1) are located in the
lower part of the complex plane, meaning that all the leaky
modes are backward.
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When the dispersion relation is satisfied, then the following
condition holds :

|r23 r21| = e2 γ′′2 h. (4)

As demonstrated in the annex, |rij| > 1 whenever one of the
media is left-handed. Since medium 2 is left-handed then the
condition

e2 γ′′2 h > 1 (5)

should be satisfied, which is possible for γ′′2 > 0 and therefore
for α′′ < 0 (see the annex for details). The fact that rij > 1 is
thus the main reason why the poles of r are under the axis and
why the leaky slab modes are backward.

We must underline the fact that our demonstration is valid
only for the first Riemann sheet : our proof cannot exclude that
there may be some poles on the other Riemann sheet above the
real axis, corresponding to forward L1 leaky slab waves when
ε1 µ1 > ε3 µ3, but we could not find any.

3.2 Leaky surface modes

Let us now consider the situation in which the field is evanes-
cent in the left-handed medium. Then γ2 is purely imagi-
nary on the real axis. Since e2 γ′′2 h tends towards infinity when
h → +∞ then Eq. (4) can be satisfied only if r23 has a pole (r21
cannot have one since the field is always propagative in the
upper medium). This means that the structure may support a
leaky mode only if the interface between medium 2 and 3 can
support a guided mode. It is now well-known that such an in-
terface actually supports a surface mode [17, 18] which can,
depending on media 2 and 3, be backward (resp. forward)
corresponding to a pole under the real axis (resp. above the
real axis but on the other Riemann sheet). The leaky wave al-
ways has the same propagation direction as the surface mode,
whatever the thickness of the slab, as shown in Figure 4. In
the case of a forward leaky wave, only the zero belongs to the
first Riemann sheet, just under the real axis. The pole shown
in Figure 4 belongs to the other Riemann sheet.

Figure 5 finally shows the excitation of a backward leaky sur-
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FIG. 4 Location of the poles in the α
k0
complex plane for different values of h with

ε1 = 9, µ1 = µ3 = ε3 = 1 and (a) ε2 = −0.5 and µ2 = −1.5, showing a forward

surface mode and (b) ε2 = −5 and µ2 = −0.5, showing a backward surface mode.

FIG. 5 Modulus of the field for a left-handed slab with ε1 = 9, ε3 = µ1 = µ3 = 1,

ε2 = −0.5, µ2 = −1.5 and h = 0.6 λ using a gaussian incident beam with a waist

of 20 λ and an incidence angle of θ = 21.496◦. The pole corresponding to the leaky

mode is located at αp = (1.0993 + 0.001267i) k0.

face wave by a gaussian beam. The chosen values of µ2 may
be obtained with simple split ring resonators [19] for instance.

4 FUNDAMENTAL PROPERTY

Let us a consider a structure with left-handed materials. We
will call corresponding right-handed structure the structure ob-
tained by replacing any left-handed medium by a medium
with opposite permittivity and permeability, without chang-
ing the geometrical parameters.

In this section, we will concentrate on the link between the
reflection coefficient of a left-handed slab and the one of its
corresponding right-handed structure.

Let us consider the interface between a right-handed medium
labelled i and a left-handed medium j. The reflection coeffi-
cient of such an interface is rij. We will now define r+

ij the
reflection coefficient of an interface between medium i and
right-handed medium characterized by |ε j| and |µj|. It is not
difficult to see, from the expression of rij that

r+
ij =

1
rij

. (6)

This allows us to understand why the Goos-Hänchen shift of
an interface between a right- and a left-handed medium is
the opposite of the corresponding right-handed structure [11]
since the phases of both structures are opposite on the real
axis.

The reflection coefficient r can now be written

r =
e2iγ2 h

r+
23

− 1
r+

21

1− e2iγ2 h

r+
21 r+

23

(7)

=
r+

23 e−2iγ2 h − r+
21

1− r+
21 r+

23 e−2iγ2 h (8)

(9)

Since
√

z∗ =
√

z∗ except when z is on the cut line, then
γ(z∗) = γ(z)∗ and hence r+

ij (z)∗ = r+
ij (z∗) so that

r(z)∗ =
r+

23(z∗) e2iγ2(z∗) h − r+
21(z∗)

1− r+
21(z∗) r+

23(z∗) e2iγ2(z∗) h
, (10)

which can simply be written

r(z)∗ = r+(z∗), (11)
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where r+ is the coefficient reflection of the corresponding
right-handed slab. Note that this relation does not hold on the
cut line, but that it holds for the two Riemann sheets. This
means that the poles of the left-handed slab and the poles of
the corresponding right-handed slab are symmetrical with re-
spect to the real axis. This means that L2 waves can be excited
for the same incidence angle for both structures. This is not
the case for L1 modes : the function r on the real axis is contin-
uous with the lower part of the first Riemann sheet whatever
the situation and the poles which are above the cut line thus
have no effect on the real axis.

As an example, we have computed the field in TE polariza-
tion inside and around the slab when it is illuminated with
a gaussian beam for the left-handed slab and its correspond-
ing right-handed structure. The results are shown in Figures 6
and 7.

FIG. 6 Modulus of the field for a symmetrical slab with ε1 = ε3 = 9, µ1 = µ3 = 1,

ε2 = 1.5, µ2 = 1 and h = 1.3 λ using a gaussian incident beam with a waist of 20 λ

and an incidence angle of θ = 22.78◦.

FIG. 7 Modulus of the field for a symmetrical slab with ε1 = ε3 = 9, µ1 = µ3 = 1,

ε2 = −1.5, µ2 = −1. and h = 1.3 λ using a gaussian incident beam with a waist

of 20 λ and an incidence angle of θ = 22.78◦. The pole corresponding to the leaky

mode is located at αp = (1.16823− 0.01125i) k0.

5 THE GROUNDED LEFT-HANDED SLAB

The grounded left-handed slab is a much more simple struc-
ture for (i) there is no need to distinguish two different types
of leaky slab modes and (ii) the structure can not support any
leaky surface mode. All the leaky modes are then slab modes
and are found for α < n2 k0. The reflection coefficient of the
grounded slab is given by Eq. (2) with r23 = −1 for the TE
polarization and r23 = 1 for the TM polarization so that the
dispersion relation gives

|r12| = e2 γ′′2 h. (12)

Since |r12| > 1 then all the solutions of the dispersion relation
are located in the lower part of the complex plane so that they
are all backward.

It is then easy to show that the relation r+(z)∗ = r(z∗) still
holds. As a consequence, the leaky modes of a grounded left-

handed slab and of its corresponding right-handed structure
can be excited for the same angle of incidence of the impinging
beam.

6 CONCLUSION

In this paper, we have thoroughly studied the leaky modes
of a left-handed slab for realistic values of the permittivity
and permeability of the left-handed medium [7, 19, 20] which
can be obtained using structures like split-ring resonators. Our
results can be summarized as follows. Left-handed slab may
support two types of leaky modes :

• Leaky slab modes, which are always backward because
of the negative refraction phenomenon. When the trans-
mission is not null, leaky modes of the left-handed slab
and of its corresponding right-handed structure are ex-
cited for the same angle of incidence.

• Leaky surface modes, which may be backward or for-
ward depending on the propagation direction of the sur-
face wave itself.

This work could help to interpret many giant lateral shifts as
excitations of exotic leaky waves [12, 13, 16]. Since the ex-
istence of backward slab waves is linked to the property of
negative refraction, and since these leaky waves constitute a
signature of a left-handed slab behaviour we think that they
could be used to characterize the left-handedness of metama-
terial or photonic crystal structures far better than other meth-
ods [21].
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ANNEX

In this annex, we will clearly define the choice we have made
for the definition of the complex square root and prove that for
z on the first Riemann sheet (but not on the cut line) we have
|rij(z)| > 1 when media i and j are not both right-handed.

Since the square root can be continued on the complex plane,
r and rij can be continued as well. We have chosen to take
√

z =
√

r ei θ
2 with z = r eiθ and θ ∈] − π, π], as a definition

of the square root. This means that we have placed the cut
line on the negative part of the real axis and if x is a positive
real,

√
−x = i

√
x. This defines the square root on the entire

complex plane, to which we refer as the first Riemann sheet.
When we write that z is on the second Riemann sheet, it will
mean that we have taken the opposite of

√
z as defined above.

With this choice, we have (i) <(
√

z) ≥ 0 (ii)
√

z∗ =
√

z∗

for z on both sheets but not on the cut line (iii) if =(z) < 0,
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=(
√

z) < 0 and if =(z) > 0, =(
√

z) > 0 (iv) the func-

tion γ(z) =
√

ε µ k2
0 − z2 has a cut line on the real axis (on

]− ∞,−n k0] ∪ [n k0, +∞] more precisely) and the function γ

on the real axis is continuous with the part of the complex
plane which is under the cut line : when z passes through the
cut line from the first Riemann sheet (coming from the lower
part of the plane) to the second Riemann sheet, γ(z) is con-
tinuous. When a function which can be written using γ(z)
presents a pole, it must be found either (i) for z on the first
Riemann sheet and under the real axis (we will say that the
pole itself is on the first Riemann sheet in this case) or (ii) for
z on the second Riemann sheet but above the real axis.

We have
rij =

κi − κj

κi + κj
. (13)

The modulus of rij reads as

|rij|2 =
(κi − κj) (κ∗i − κ∗j )

(κi + κj) (κ∗i + κ∗j )
(14)

=
|κi|2 + |κj|2 − 2 (κ′i κ′j + κ′′i κ′′j )

|κi|2 + |κj|2 + 2 (κ′i κ′j + κ′′i κ′′j )
, (15)

(16)

where κ = κ′ + i κ′′.

Let us define x and y the real and imaginary part of z = x + i y
on the first Riemann sheet. Let us assume that x > 0. We have

γ =
√

n2 k2
0 − z2 =

√
n2 k2

0 − x2 + y2 − 2 i x y. (17)

If y > 0, then x y > 0 and thus =(n2 k2
0 − z2) < 0 so that

finally =(γ) < 0. If y < 0, then x y < 0 so that =(γ) > 0. Since
γ(−z) = γ(z) the result will hold for x < 0 too and for x = 0,
γ(z) is real and positive so that the result obviously holds. So
the imaginary part of γ(z) is positive (resp. negative) when
the imaginary part of z is negative (resp. positive).

For any right-handed medium, κ has the same property than
γ. For a left-handed medium, since κ = γ

µ or κ = γ
ε depend-

ing on the polarization, the imaginary part of κ has the sign of
=(z). Since i and j are not both right-handed, then κ′′i and κ′′j
have not the same sign and the product κ′′i κ′′j is always nega-
tive. Since <(

√
z) > 0 for all z on the first Riemann sheet then

κ′i κ′j is always negative too.

Finally, since κ′i κ′j + κ′′i κ′′j < 0, we have |rij| > 1 for all z except
on the real axis. Please note that rij is not, in the particular
case of a left-handed medium, the reflection coefficient on the
interface [22].
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