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Surface waves, named here as Dyakonov-Tamm waves, can exist at the planar interface of an isotropic dielectric material and a chiral
sculptured thin film (STF). Due to the periodic nonhomogeneity of a chiral STF, the range of the refractive index of the isotropic material
is smaller but the range of the propagation direction in the interface plane is much larger, in comparison to those for the existence of
Dyakonov waves at the planar interface of an isotropic dielectric material and a columnar thin film. Dyakonov-Tamm waves could therefore
be detected more easily than Dyakonov waves. [DOI: 10.2971/jeos.2007.07021]
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1 INTRODUCTION

Less than two decades ago, Dyakonov [1] theoretically pre-
dicted the propagation of a surface wave at the planar inter-
face of an isotropic dielectric material and a positively uniaxial
dielectric material with its optic axis wholly parallel to the in-
terface plane. If ψ indicates the angle between the optic axis
and the direction of surface-wave propagation, and ns is the
refractive index of the isotropic dielectric material, then the
Dyakonov wave exists for rather narrow ranges of ψ and ns. The
consequent significance of Dyakonov waves for optical sens-
ing and waveguiding was recognized thereafter [2, 3]. Since
then, the concept of the Dyakonov wave has been extended to
the planar interfaces of isotropic and biaxial dielectric mate-
rials [4]. The possibility of the anisotropic material being ar-
tificially engineered, either as a photonic crystal with a short
period in comparison to the wavelength [5] or as a columnar
thin film (CTF) [6], has also emerged. Let us note here that the
Dyakonov wave still remains to be experimentally observed,
in part due to the narrow range of ψ for its existence [5].

The anisotropic material is taken to be homogeneous in all of
the foregoing and other reports on the Dyakonov wave. What
if the anisotropic material were to be chosen as periodically
nonhomogeneous in a direction normal to the bimaterial inter-
face? This question initiated a research project, the first results
of which are being communicated here. Being a natural exten-
sion of a CTF, a chiral sculptured thin film (STF) was chosen
as the periodically nonhomogeneous anisotropic material [7].

A chiral STF is made by directing a vapor flux in vacuum at an
oblique angle onto a rotating substrate. Under suitable condi-
tions, an assembly of parallel nanohelixes of the evaporated
species forms, with the helical axes perpendicular to the sub-
strate. An example of a single nanohelix is illustrated in Fig-
ure 1.
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FIG. 1 Geometry of a structurally right-handed helix.

By adjusting deposition parameters, both the pitch 2Ω and
the angle of inclination χ ∈ (0, π/2] can be controlled. Each
nanohelix, composed of multimolecular clusters with ∼ 3 nm
diameter, is effectively a continuously bent column of ∼ 100-
nm cross-sectional diameter. Therefore, at visible frequencies
and lower, a chiral STF may be regarded as a linear, locally
orthorhombic, unidirectionally nonhomogeneous continuum
whose relative permittivity dyadic is akin to that of chiral
smectic liquid crystals [8].

In formulating the surface-wave-propagation problem on the
planar interface of an isotropic, homogeneous, dielectric mate-
rial and a chiral STF, we adopted a methodology originally de-
veloped by Tamm in 1932 for a realistic Kronig-Penney model.
Instead of assuming the solid to occupy the entire space, as is
commonplace in solid-state physics [9], Tamm assumed the
solid to occupy only a half-space. The incorporation of the
oft-neglected surface led to the emergence of electronic states
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localized to the surface. Tamm states were experimentally ob-
served in 1990 on the surfaces of superlattices [10], and their
optical analogs for superlattices of isotropic materials are be-
ing investigated these days [11, 12].

Given the braiding of Dyakonov waves and Tamm states in
this communication, we decided to name the surface wave
at the planar interface of an isotropic, homogeneous, dielec-
tric material and a chiral STF as the Dyakonov-Tamm wave.
Section 2 presents the boundary-value problem and the dis-
persion equation for the Dyakonov-Tamm wave. Section 3
contains numerical results when the chiral STF is chosen
to be made of titanium oxide [6, 13]. An exp(−iωt) time-
dependence is implicit, with ω denoting the angular fre-
quency. The free-space wavenumber, the free-space wave-
length, and the intrinsic impedance of free space are denoted
by ko = ω

√
εoµo, λo = 2π/ko, and ηo =

√
µo/εo, respec-

tively, with µo and εo being the permeability and permittiv-
ity of free space. Vectors are underlined, dyadics underlined
twice; column vectors are underlined and enclosed within
square brackets, while matrixes are underlined twice and sim-
ilarly bracketed. Cartesian unit vectors are identified as ux, uy
and uz. The dyadics employed in the following sections can
be treated as 3×3 matrixes [14, 15].

2 FORMULATION

2.1 Geometry and permitt ivity

Let the half-space z ≤ 0 be occupied by an isotropic, homoge-
neous, nondissipative, dielectric material of refractive index
ns. The region z ≥ 0 is occupied by a chiral STF with unidi-
rectionally nonhomogeneous permittivity dyadic given by [7]

ε(z) = εo Sz(z) · Sy(χ) · εref · ST
y (χ) · ST

z (z) , z ≥ 0 , (1)

where the reference relative permittivity dyadic

εre f = εa uzuz + εb uxux + εc uyuy (2)

indicates the locally orthorhombic symmetry of the chiral STF.
The dyadic function

Sz(z) = cos
( πz

Ω
+ ψ

) (
uxux + uyuy

)
+ h sin

( πz
Ω

+ ψ
) (

uyux − uxuy

)
+ uzuz (3)

contains 2Ω as the structural period, ψ as an angular offset,
and h = ±1 as the handedness parameter. The tilt dyadic

Sy(χ) = (uxux + uzuz) cos χ

+ (uzux − uxuz) sin χ + uyuy (4)

involves the angle of inclination χ. The superscript T denotes
the transpose.

Without loss of generality, we take the Dyakonov-Tamm wave
to propagate parallel to the x axis in the plane z = 0. There is
no dependence on the y coordinate, whereas the Dyakonov-
Tamm wave must attenuate as z → ±∞.

2.2 Field representations

In the region z ≤ 0, the wave vector may be written as

ks = κ ux − αs uz , (5)

where
κ2 + α2

s = k2
o n2

s , (6)

κ is positive and real-valued for unattenuated propagation
along the x axis, and Im [αs] > 0 for attenuation as z → −∞.
Accordingly, the field phasors in the region z ≤ 0 may be writ-
ten as

E(r) =
[

A1 uy + A2

(
αs

ko
ux +

κ

ko
uz

)]
exp(iks · r) , z ≤ 0 ,

(7)
and

H(r) = η−1
o

[
A1

(
αs

ko
ux +

κ

ko
uz

)
− A2 n2

s uy

]
exp(iks · r) ,

z ≤ 0 , (8)

where A1 and A2 are unknown scalars.

The field representation in the region z ≥ 0 is more compli-
cated. It is appropriate to write

E(r) = e(z) exp(iκx)
H(r) = h(z) exp(iκx)

}
, z ≥ 0 , (9)

and create the column vector[
f (z)

]
=

[
ex(z) ey(z) hx(z) hy(z)

]T . (10)

This column vector satisfies the matrix differential equation
[7, 16]

d
dz

[
f (z)

]
= i

[
P(

πz
Ω

+ ψ, κ)
]
·
[

f (z)
]

, z > 0 , (11)

where the 4×4 matrix

[P(ζ, κ)] =

ω


0 0 0 µo

0 0 −µo 0

h εo (εc − εd) cos ζ sin ζ −εo
(
εc cos2 ζ + εd sin2 ζ

)
0 0

εo
(
εc sin2 ζ + εd cos2 ζ

)
−h εo (εc − εd) cos ζ sin ζ 0 0



+ κ
εd (εa − εb)

εa εb
sin χ cos χ


cos ζ h sin ζ 0 0

0 0 0 0

0 0 0 −h sin ζ

0 0 0 cos ζ



+


0 0 0 − κ2

ωεo

εd
εa εb

0 0 0 0

0 κ2

ωµo
0 0

0 0 0 0

 (12)

and
εd =

εaεb

εa cos2 χ + εb sin2 χ
. (13)

Two independent techniques [17, 18] exist to solve (11). Either
of the two may be harnessed to determine the matrix [N] that
appears in the relation

[ f (2Ω)] = [N] · [ f (0+)] (14)
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to characterize the optical response of one period of the chiral
STF. By virtue of the Floquet-Lyapunov theorem [19], we can
define a matrix [Q] such that

[N] = exp
{

i2Ω[Q]
}

. (15)

Both [N] and [Q] share the same eigenvectors, and their eigen-

values are also related. Let [t](n), (n = 1, 2, 3, 4), be the eigen-
vector corresponding to the nth eigenvalue σn of [N]; then, the
corresponding eigenvalue αn of [Q] is given by

αn = −i
ln σn

2Ω
. (16)

2.3 Dispersion equation for
Dyakonov-Tamm wave

For the Dyakonov-Tamm wave to propagate along the x axis,
we must ensure that Im[α1,2] > 0, and set

[ f (0+)] =
[
[t](1) [t](2)

]
·
[

B1
B2

]
, (17)

where B1 and B2 are unknown scalars; the other two eigen-
values of [Q] describe waves that amplify as z → ∞ and can-
not therefore contribute to the Dyakonov-Tamm wave. At the
same time,

[ f (0−)] =


0 αs

ko

1 0
αs
ko

η−1
o 0

0 −n2
s η−1

o

 ·
[

A1
A2

]
, (18)

by virtue of (7) and (8). Continuity of the tangential compo-
nents of the electric and magnetic field phasors across the
plane z = 0 requires that

[ f (0−)] = [ f (0+)] , (19)

which may be rearranged as

[M] ·


A1
A2
B1
B2

 =


0
0
0
0

 . (20)

For a nontrivial solution, the 4×4 matrix [M] must be singular,
so that

det [M] = 0 (21)

is the dispersion equation for the Dyakonov-Tamm wave.

3 NUMERICAL RESULTS AND
DISCUSSION

Although chiral STFs may be made by evaporating a wide va-
riety of materials [7, Chap. 1], the constitutive parameters of
chiral STFs have not been extensively measured. However, the
constitutive parameters of certain columnar thin films (CTFs)
are known. CTFs are assemblies of nanorods oriented at an

χ 

Growing nanorods 

χv 

Vapor flux 

Stationary substrate 

FIG. 2 Schematic of the growth of a columnar thin film. The vapor flux is directed at

an angle χv, whereas nanorods grow at an angle χ ≥ χv.

angle χ to the substrate and are produced by directing the va-
por at an angle χv onto a stationary substrate, as shown in Fig-
ure 2; the vapor incidence angle χv (in addition to the evapo-
rant species) allows an empirical determination of the consti-
tutive parameters εa,b,c and χ [13]. When the substrate is ro-
tated about a normal passing through it at a constant angular
velocity of reasonable magnitude, parallel nanohelixes grow
instead of parallel nanorods, and a chiral STF is deposited in-
stead of a CTF [7, 20]. Although the substrate is nonstationary,
the functional relationships connecting εa,b,c and χ to χv for
CTFs would substantially apply for chiral STFs, since the va-
por incidence angle χv remains constant during the deposition
of thin films of either kind.

Among the CTFs which have been characterized are those
made of titanium oxide, a material important in many prac-
tical applications [6]. Empirical relationships have been deter-
mined for titanium-oxide CTFs at λo = 633 nm by Hodgkin-
son et al. [13] as

εa =

[
1.0443 + 2.7394

(
χv

π/2

)
− 1.3697

(
χv

π/2

)2
]2

, (22)

εb =

[
1.6765 + 1.5649

(
χv

π/2

)
− 0.7825

(
χv

π/2

)2
]2

, (23)

εc =

[
1.3586 + 2.1109

(
χv

π/2

)
− 1.0554

(
χv

π/2

)2
]2

, (24)

and

tan χ = 2.8818 tan χv , (25)

where χv and χ are in radian. We must caution that the forego-
ing expressions are applicable to CTFs produced by one par-
ticular experimental apparatus, but may have to be modified
for CTFs produced by others on different apparatuses; hence,
we used these expressions for the numerical results presented
in this section for chiral STFs simply for illustration. Further-
more, we set h = 1, Ω = 197 nm, and χv = 7.2◦. Following
Walker et al. [4] and Polo et al. [6], we left ψ and ns as vari-
able parameters. All numerical results presented in this sec-
tion were computed for λo = 633 nm.

As mentioned in Section 2, the matrix [N] can be calculated
using two numerical techniques [18]: the piecewise uniform
approximation technique and a series technique based on the
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Maclaurin expansion of [P(ζ, κ)] with respect to ζ. Both yield
the same results, and the piecewise uniform approximation
technique was selected for calculations reported here. Basi-
cally, the technique consists of subdividing the chiral STF into
a series of electrically thin sublayers parallel to the interface,
and assuming the dielectric properties to be spatially uni-
form in each sublayer. The accuracy of this technique depends
on the thickness of the sublayers, with thinner ones yielding
more accurate results. Based on experience [7, 18], a sublayer
thickness of 2 nm gives reasonable results.

The magnitude of the phase velocity of the Dyakonov-Tamm
wave was compared with that of the phase velocity of the elec-
tromagnetic wave in the bulk isotropic material. For this pur-
pose, we defined the relative phase speed

v ≡ vDT/vs , (26)

where vDT = ω/κ is the phase speed of the Dyakonov-Tamm
wave and vs = 1/ns

√
εoµo is the phase speed of the electro-

magnetic wave in the bulk isotropic material. Figure 3 shows v
as a function of ψ for several values of ns. The phase velocity of
the Dyakonov-Tamm wave, like several other surface waves
[1]-[6], was found to be lower in magnitude than the phase
velocity of the electromagnetic wave in the bulk isotropic ma-
terial.
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1.001

-20 0 20 40 60 80 100
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v 
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1.64
1.645
1.65

_

ns

FIG. 3 v as a function of ψ with χv = 7.2◦ for ns = 1.631, 1.635, 1.64, 1.645, and

1.65.

The minimum and maximum values of ns (1.631 and 1.65,
respectively) in Figure 3 represent the approximate limits of
the ns-range for which the determinantal Eq. (21) represent-
ing the boundary conditions between the two material could
be solved. Outside this ns-range, the Dyakonov-Tamm wave
can not exist for the chosen parameters.

Each of the curves in Figure 3 was drawn over the continu-
ous ψ-range for which the Dyakonov-Tamm wave was found
to exist. The plot in Figure 3 is restricted to ψ ∈ [−20◦, 100◦].
For each value of ψ in this plot (and all remaining plots in
this paper), a similar point exists at ψ + 180◦ with an identi-
cal value of the function; thus, for each value of ns, there ex-
ist two separate ranges of ψ ∈ [−180◦, 180◦] over which the

Dyakonov-Tamm waves exist. Of the curves presented, the
one for ns = 1.64, about mid-range in ns, has the widest range
in ψ with a width ∆ψ = 98◦. The mid-point of the ψ-range is
ψm = 37◦. As ns approaches either end of the ns-range, ∆ψ

diminishes. At the low end of the ns-range, ∆ψ = 51◦ when
ns = 1.635, but ∆ψ = 20◦ when ns = 1.631. At the high end of
the ns range, ∆ψ = 54◦ when ns = 1.645, but ∆ψ = 15◦ when
ns = 1.65. Only a slight variation in ψm, the mid-point of the
ψ-range, is seen. For ns = 1.631, 1.635, 1.4, 1.645, and 1.65, we
find ψm = 36◦, 36.5◦, 37◦, 40◦, and 39.5◦, respectively. There
seems to be a slight increase in ψm as ns increases. The val-
ues of ψm, however, approximate since the end-points of the
ψ-range were only determined by the last whole degree lying
inside the range. This may account for why ψm at ns = 1.65 is
slightly lower than that at ns = 1.645.

Every curve in Figure 3 is smooth with a broad minimum in
the vicinity of 35◦ to 40◦ which levels off at both ends of the ψ-
range. The minimum is deepest for curves representing mid-
range values of ns, while curves at extreme values of ns are
nearly flat. As ns decreases, the v vs. ψ curve shifts downward.

The confinement of the Dyakonov-Tamm wave to the inter-
face is described by the decay constants which are given by
the imaginary part of the two eigenvalues in the chiral STF
(α1 and α2) and the single eigenvalue αs in the isotropic di-
electric material. We found all three eigenvalues to be purely
imaginary, which are shown in Figure 4 as functions of ψ for
several values of ns.

In Figure 4, typical values of Im[α1] are about one order of
magnitude larger than Im[α2]. Every Im[α1] vs. ψ curve in
Figure 4a is bell-shaped with a maximum in the vicinity of
ψ = 35◦ to 40◦. The maximum change in Im[α1] over the ψ-
range is greatest for ns = 1.64, the mid-range of ns. At this
value of ns, the variation in Im[α1] is still less than 0.5%. To-
ward each end of the ns-range, the Im[α1] vs. ψ curve flattens.

The Im[α2] vs. ψ curves in Figure 4b show two types of be-
havior. At the high end of the ns-range (ns = 1.645, 1.65),
the curves are bell-shaped with greater variation occurring
at ns = 1.645 away from the end of the ns-range, just as
evinced by Im[α1]. In contrast, in the lower half of the ns-range
(ns = 1.631, 1.635, 1.64), the Im[α2] vs. ψ curves do not level off
at the ends of the respective ψ-ranges, but continue to decrease
all the way to zero.

The behavior of the decay constant in the isotropic material
can be gleaned from the Im[αs] vs. ψ curves in Figure 4c. These
curves look very similar to those of Im[α2] in Figure 4b. How-
ever, the dependence of the shape of the Im[αs] vs. ψ curve
on ns is opposite that of the Im[α2] vs. ψ curve. The curves in
Figure 4c for low values of ns are bell-shaped with Im[αs] re-
maining non-zero over the entire ψ-range; but the curves for
large values of ns maintain their downward curvature with
Im[αs] going to zero at both ends of the respective ψ-ranges.
Thus, the Dyakonov-Tamm wave becomes delocalized from
the interface z = 0 at the limiting values of ns; delocalization
occurs on the chiral STF side of the interface at low values of
ns, but on the isotropic substrate side of the interface for high
values of ns.
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FIG. 4 Decay constants as functions of ψ at λo = 633 nm for same values of ns and

χv as in Figure 3. a) α1 b) α2 c) αs.

Similar results were obtained at other values of χv. As an ex-
ample, Figure 5 displays v when χv = 25◦.

As in Figure 3, the maximum and minimum values of ns dis-
played in Figure 5 represent the approximate limits of the
range of ns over which surface-wave propagation is possi-
ble. The width of the ns-range for χv = 25◦ is roughly half
of that obtained for χv = 7.2◦. The curves for χv = 25◦ dis-
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FIG. 5 v as a function of ψ with χv = 25◦ for ns = 1.947, 1.95, 1.955, 1.958.

play the same general shape and trends as for the case of
χv = 7.2◦, with similar values of ∆ψ. However, the minimums
have shifted to a lower value of ψ between 15◦ and 20◦. Now,
ψm = 13◦, 14.5◦, 17.5◦, and 18◦ for ns = 1.947, 1.950, 1.955, and
1.958, respectively. Again, a slight upward drift of ψm as ns in-
creases can be seen. The figure also shows that the minimum
value of v is larger for χv = 25◦ than it is for χv = 7.2◦. Al-
though not shown, all three decay constants are lower at the
higher value of χv.

Calculations were also made at λo = 533 and 733 nm, with
the assumption of the same constitutive and geometric pa-
rameters as at λo = 633 nm. Qualitatively similar conclusions
on the width of the ranges of ns and ψ for Dyakonov-Tamm
waves were drawn from the numerical results obtained. Fur-
thermore, the minimum value of v was found to increase and
the maximum values of Im[α1], Im[α2], and Im[αs] were found
to decrease, as the ratio λo/Ω increases.

Additional calculations, not shown here, were made for an
identical chiral STF except with structural left-handedness
(h = −1). The exact same results were obtained with the left-
handed chiral STF as with the right-handed chiral STF pre-
sented in Figures 2-4. It must borne in mind that, by changing
h from±1 to∓1 in (3), we invert not only the structural hand-
edness of the chiral STF but also the sense of rotation brought
about by ψ 6= 0.

4 CONCLUDING REMARKS

To conclude, we examined the phenomenon of surface-wave
propagation at the planar interface of an isotropic dielectric
material and a chiral sculptured thin film. The boundary-
value problem was formulated by marrying the usual for-
malism for the Dyakonov wave at the planar interface of an
isotropic dielectric material and a columnar thin film with the
methodology for Tamm states in solid-state physics. The so-
lution of the boundary-value problem let us deduce the exis-
tence of Dyakonov-Tamm waves.
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In constitutive terms, the major difference between a CTF
and a chiral STF is the periodic nonhomogeneity enshrined in
Sz(z); in the limit Ω → ∞, a nanohelix uncurls into a nanorod,
and a chiral STF transmutes into a CTF. However, the distinc-
tion between chiral STFs and CTFs is nontrivial, as may be
deduced from the Floquet-Lyapunov theorem [19, 16]. In com-
parison to the Dyakonov wave localized to the planar inter-
face of an isotropic dielectric material and a CTF [6], we found
that the ns-range for the existence of a Dyakonov-Tamm wave
at the planar interface of an isotropic dielectric material and a
chiral STF is smaller. However, the ψ-range is much larger in
width: in comparison to ∆ψ < 1◦ with CTFs [6] - and ∆ψ < 5◦

with effectively uniaxial, short-period photonic crystals [5] -
the width of the ψ-range is as high as 98◦ in Figure 3 with
chiral STFs. This implies that Dyakonov-Tamm waves could
be detected much more easily than Dyakonov waves.
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