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The perturbation method is an effective approach for optical tomography reconstruction, however its success depends to a great extent on
how close initial estimates are to the actual solutions. In addition, the linear perturbation method can only be applied to the reconstruction
of differences between two similar states. To overcome these limitations, we present a pre-scaling technique applied to the qualitative
reconstruction of the absorption map. In this method, the initial estimate of the absorption coefficient is scaled to an appropriate value
before it is employed in iteration. The scaled estimate leads to the forward solution on the boundary close to the measured data. In
the simulated experiments, reconstructions were performed with and without the pre-scaling technique. The results demonstrate that the
proposed technique extends the selection of the initial estimate of optical properties, and makes it feasible that the absolute value of
optical properties can also be used in the linear perturbation approach. [DOI: 10.2971/jeos.2007.07015]
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1 INTRODUCTION

Diffusion optical tomography (DOT) is a relatively new but
rapidly growing technique, which has shown its powerful po-
tential in medical imaging [1]-[3]. Currently the main applica-
tions of DOT are monitoring cerebra oxygenation for neonates
and detecting breast cancer.

Tissue is a highly scattering medium and its interaction with
photons is highly nonlinear, which makes the reconstruction
of DOT images a very challenging task. Many investigators
have made significant contributions to this field, and various
reconstruction algorithms have been developed [4]-[11]. The
perturbation method is one of the most effective approaches,
however its success depends considerably on how close the
initial estimate is to the actual solution [4]. When they deviate
from each other significantly, the perturbation method fails, so
selecting good initial estimates of optical properties generally
requires prior information. It is not easy in any case. The linear
perturbation method is typically used in the reconstruction of
difference imaging where measurements are taken before and
after a small change in the optical properties [1]. In this case,
two sets of data are generally required. If the reconstruction
is performed using the absolute value, i.e. one set of acquired
data, the full non-linear problem must be considered.

A novel nonlinear perturbation approach was proposed by A.
Torricelli et al [12, 13]. It is based on the application of “Padé
approximants” and can empirically extend the linear pertur-
bation method. In this paper, we propose another approach,
which also extends the linear perturbation method by em-
pirically selecting the initial estimates of optical parameters.
In addition, it makes it feasible that the linear perturbation
method can be done using absolute values. This approach is

simple but useful to primarily locate a tumor in tissue. Fur-
thermore the requirement of prior information about the opti-
cal properties is not necessary.

The difference between the absorption coefficients of diseased
and healthy tissue is meaningful in clinical diagnosis. In many
practical cases, the calculation of the exact absorption coefficient
distribution in tissue is not necessary since the outline of the
absorption contrast map between the diseased and the healthy
tissue is sufficient for clinical diagnosis. Thus in many situa-
tions a qualitative, rather than a quantitative, absorption map is
clinically sufficient.

To achieve this objective, we present a pre-scaling technique for
the qualitative reconstruction of tissue absorption maps. In this
method, we scale the initial estimate of the absorption coeffi-
cient to an appropriate value, which consequently leads to for-
ward solutions, namely the derived values on the boundary,
that are close to the measured data. The scaled estimate is then
iteratively updated as in the conventional linear perturbation
method.

A number of different sets of initial estimates were employed
in simulated experiments to assess the effectiveness of the pro-
posed method. Further simulations were also run in which
noise was added to test the effect on the reconstruction results.

2 OPTICAL MODEL IN TISSUE

As photons migrate in tissue they undergo multiple scattering
as well as absorption. In the near-infrared (NIR) region scatter-
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ing is the dominant interaction. The process of photon trans-
port in tissue can be represented using the radiation trans-
port equation (RTE) [1], however, solving the RTE is extremely
computationally expensive. Under certain assumptions, the
P1 approximation to the RTE derives the Diffusion Equation
(DE), which is more widely used to model light transport in
tissue [1, 4, 14].

Optical imaging systems can be broadly divided into three
categories [1]: continuous-wave (CW), time-domain (TD) and
frequency-domain (FD). Accordingly, the diffusion equation
has three versions. The time and frequency-domain versions
have been derived in detail in earlier literature [14]. In this pa-
per, the CW model is used, therefore the diffusion equation
can be written as:

−∇ (D(r)∇Φ(r)) + µa(r)Φ(r) = q(r) (1)

where r is the location in the tissue domain Ω, Φ(r) is the pho-
ton density distribution, q(r) is the source term, µa(r) is the ab-
sorption coefficient and D is the diffusion coefficient given by:
D = 1/[3(µa + µ′s)], where µ′s = (1− g)µs is the reduced scat-
tering coefficient, µs is the scattering coefficient and g is the
anisotropic factor. The spatially dependent coefficients D(r)
and µa(r) are the two main optical properties that reflect the
function of the diseased and healthy tissue. It is the objective
of DOT reconstruction to reconstruct these. If the source q(r)
is a collimated incident beam, it is treated as a spatial Dirac
function, namely a “point source” under the surface ∂Ω at a
depth of one mean free length [6], where q(r) = q0δ(r − rs),
rs is the location of the equivalent point source and q0 is the
strength of the source.

The Robin boundary condition in the steady-state case is usu-
ally employed [15] and hence the measured photon flux Γ(ξ)
on the boundary can be expressed as:

Γ(ξ) = −D(ξ)
∂Φ(ξ)

∂n
(2)

where n is the outward normal at the site ξ on the boundary
∂Ω. In the CW case Eq. (1), along with boundary condition (2),
is the most commonly used forward model for DOT and is the
model that will be used in this paper.

3 PERTUBATION METHOD FOR DOT
INVERSE PROBLEM

The definitions of the forward and inverse problems for DOT
were presented in the literature [14]. The forward problem is
often expressed by a general nonlinear forward operator as
y = F[p(r)] and the inverse by a general inverse operator as
{p} = F−1[{y}], where p is the parameter in domain Ω and y
is the measured data set on the boundary ∂Ω.

The forward problem can be solved by stochastic or determin-
istic approaches [16]. The finite-element method (FEM) is a
very powerful deterministic approach as it is suitable for arbi-
trary geometries and highly inhomogeneous parameter distri-
butions [6]. Using FEM, the forward problem can be reduced
to a linear matrix equation of the form [A]{Φ} = {b}. Stan-
dard methods, such as the Cholesky decomposition or conju-
gated gradient method can then be employed.

The inverse problem can be solved by analytical, backpro-
jection, linear or nonlinear methods [14]. The perturbation
method is a linearisation method based on a Taylor expansion.

If the estimate p̂ is close to the true solution p, the forward op-
erator y = F[p(r)] can be expanded as a Taylor series around
p̂ [4]:

y = F[ p̂] + F′[ p̂](p− p̂) + (p− p̂)T F′′[ p̂](p− p̂) + · · · (3)

where F′ and F′′ are the first- and second-order Fréchet
derivatives of the forward operator F. In the discrete case F′

is represented by J, the Jacobian matrix, and F′′ is represented
by H, the Hessian matrix. Neglecting terms above first-order
and letting ∆y = (y− ŷ) and ∆p = (p− p̂), Eq. (3) becomes:

∆y = J[ p̂]∆p (4)

The linear perturbation method is based on Eq. (4), in which
the parameter p̂ is iteratively updated to approach the true so-
lution p. Unfortunately its success is significantly dependent
on how close the initial estimate is to the true solution [4, 16].
In addition, this method is suitable for relative rather than ab-
solute image reconstruction [1].

To overcome these limitations, we present a pre-scaling tech-
nique that is used to qualitatively reconstruct the absorption
map. Selection of initial estimates is more flexible when using
this method.

The reverse process is usually interpreted as the optimization
of an objective function:

ψ =
S

∑
j=1

M

∑
i=1

((
Γj,i

)
mea −

(
Γj,i

)
cal

)2

(5)

where (Γj,i)mea is the measurement on the boundary ∂Ω at the
ith detector due to the jth source, (Γj,i)cal is the predicted value
at the same site, S and M are the number of sources and de-
tectors respectively. The inverse process is to iteratively ad-
just the optical parameters of the tissue so that the predicted
values (Γj,i)cal derived by the forward problem gradually ap-
proach the measured data (Γj,i)mea. If the initial estimate p̂ de-
viates from its true solution p considerably, the derived value
(Γj,i)cal will accordingly deviate considerably from the mea-
surement (Γj,i)mea. In this case, the conventional perturbation
method can not be applied. The idea of the pre-scaling tech-
nique is to adjust the initial estimate p̂ according to the differ-
ence between (Γj,i)cal and (Γj,i)mea so as to make it closer to p
before the conventional perturbation method is used.

4 IMPROVED PERTUBATION METHOD

4.1 Theoretical foundation for the
pre-scal ing technique

When the diffusion equation is employed to model photon
transport in tissue and CW measured data are employed in
optical tomography, the diffusion and absorption coefficients
cannot be recovered simultaneously [17, 18]. The absorption
coefficient µa is, however, more meaningful than the scatter-
ing coefficient µs in clinic diagnosis, so in many cases only the
distribution of the absorption coefficient in tissue is recovered.
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Before deriving the pre-scaling technique, let’s reveal the re-
lationship between the absorption coefficient and the bound-
ary measurement. In other words we want to make clear how
the boundary measurements Γ(ξ) vary when the absorption
coefficient µa varies. Using this knowledge we can then inves-
tigate how to scale the initial estimate of µ̂a to an appropriate
value.

For simplicity, it is assumed that the tissue domain Ω is filled
with an homogeneous object (g = 0) with diffusion coef-
ficient D and absorption coefficient µa. Furthermore since
D = 1/[3(µa + µ′s)]and the diffusion Eq. (1) is based on the
assumption µa � µ′s, it is reasonable to say that D does not
depend on µa.

Fixing the other quantities, such as the source intensity q and
the diffusion coefficient D we observe by means of a numer-
ical experiment how the boundary measurement Γ(ξ) varies
when the absorption coefficient µa varies from 0.001 to 0.4.
The curve of Γ(ξ) against µa at any location on the bound-
ary is illustrated in Figure 1a. The result is similar to an ex-
ponentially decaying curve. This can be partially interpreted
as the fact that energy attenuation during light transport in
tissue is governed by exponential decay [19]: Φ(r′)/Φ0(r) =
exp(−µtrz), where µtr = µa + µs and z is the distance that
photons travel from location r to r′. Curves that have a sim-
ilar shape shown in Figure 1a can always be derived for any
given diffusion coefficient D and source intensity q when µa is
varied.

 

FIG. 1 Curve of Γ(ξ) against µa.

As shown in Figure 1b, the measurement Γ(ξ) can be nor-
malised by multiplying by a factor α. Similarly, the absorp-
tion coefficient µa can be normalized by multiplying by β. The
areas s1 = βµa1 · αΓ1(ξ) and s2 = βµa2 · αΓ2(ξ) can be consid-
ered to be roughly equal i.e. s1 ≈ s2 thus µa1 · Γ1(ξ) ≈ µa2 ·
Γ2(ξ). Letting Γ1(ξ) =

(
Γj,i

)
mea, Γ2(ξ) =

(
Γj,i

)
cal , µa2 = µ̂a

and µa1 = µa, the following equation can be derived:

[λj,i]
∆=

(
Γj,i

)
mea(

Γj,i
)

cal

≈ µ̂a

µa
(6)

where [λj,i] is defined as the gain factor due to the jth source
and the ith dector. Eq. (6) is the mathematical basis of the
pre-scaling technique. Considering all M detectors and all S
sources, the mean gain factor λmean, which more accurately re-
flects the difference between the estimate µ̂a and the true so-

lution µa, can be derived:

λmean
∆= E[λj,i] =

1
S× M

S

∑
j=1

M

∑
i=1

[λj,i] ≈
µ̂a

µa
(7)

If λmean > 1, it means that the estimate µ̂a is larger than the
true solution µa and hence µ̂a should be decreased, otherwise
µ̂a should be increased. The estimate should thus be scaled
using the formula: µ̂a := µ̂a/λmean. The estimate µ̂a is repeat-
edly adjusted until λmean ≈ 1, which means that the predicted
value

(
Γj,i

)
calon the boundary is roughly equal to the mea-

surement
(
Γj,i

)
mea, and the estimate µ̂a is close to the true so-

lution µa. The scaled µ̂a can then be used in the conventional
perturbation method to be iteratively updated.

4.2 Improved perturbation method for
absorption map reconstruction

We present the improved perturbation method for the recon-
struction of absorption maps in algorithm 1. To reduce the in-
trinsic ill-posedness of the inverse problem, the Tikhonov reg-
ularization is employed [20, 21].

Algorithm 1. Improved perturbation method for the recon-
struction of absorption maps

Begin:

1. Set the tolerances ε needed to terminate the iterations and
ελ > 0 needed to pre-scale the initial absorption coeffi-
cient, the initial λmean > 1 + ελ, and the initial estimates
of parameters p̂(including µ̂a and µ̂s or D̂).

Repeat until |λmean − 1| ≤ ελ

2. Calculate ŷ = (Γj,i)cal by FEM. Construct the gain factor
matrix [λj,i] = yj,i/ŷj,i, where yj,i = (Γj,i)mea.

3. Compute the mean gain factor λmean = 1
S×M

S
∑

j=1

M
∑

i=1
[λj,i].

Update the absorption coefficient using µ̂a : =
µ̂a/λmean.

End repeat

Repeat until stop ε is reached:

4. Construct the Jacobian J[µ̂a].

5. Calculate ŷ and ∆y = y − ŷ. Calculate ∆µa = (JTJ +
αI)−1JT∆y, according to the Tikhonov regularization.

6. Update µ̂a := µ̂a + ∆µa. Calculate ŷ and the objective
function ψ.

7. If ψn+1 − ψn ≤ ε (where n is the number of iterations)
then terminate, otherwise repeat.

End repeat

End begin

In algorithm 1, the loop consisting of steps 2 and 3 is the pre-
scaling process. Its function is to scale the initial estimate of
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absorption coefficient µ̂a to the same magnitude of the true
solution µa. Neglecting these two steps, algorithm 1 reduces
to the conventional perturbation method.

In the reverse process, the Jacobian construction is the most
computationally costly. Various methods to calculate the ma-
trix J, such as the standard, joint source, direct and perturba-
tion methods have been developed [14, 15, 22, 23]. In this pa-
per, the joint source method is employed.

In actual applications, the noise model should be consid-
ered. Inverse problem are intrinsically ill-posed, which means
slight fluctuations in the measured data contaminated by
noise might cause the reconstructed result to drastically de-
viate from its true solution. There are three main kinds of
noise in a photodetector system [24]: thermal noise, shot noise,
and relative intensity noise. For ideal photodetectors, thermal
noise is negligible and shot noise deriving from photodetec-
tor current is dominant. At low optical intensities shot noise
is governed by a Poisson distribution, however when the in-
tensity is significantly large, it is approximately governed by
a Gaussian distribution [11]. The noise model for measured
data yj,i was developed in detail in literature [25]. If each mea-
sured data yj,i is independently corrupted by Gaussian noise
with standard deviation σj,i, the objective function (5) should
be rewritten as follows [4]:

ψ =
S

∑
j=1

M

∑
i=1

[(
yj,i − ŷj,i

)2

2σ2
j,i

]
(8)

The inverse problem then reduces to a least-squares (LS)
minimization procedure. Due to the fundamental limitation
of linearised algorithms [26] in this situation, full-nonlinear
schemes or statistical methods [27], such as Bayesian frame-
work [11, 28] and the Monte Carlo method [29], are required.
Analysis of the noise model is not the task of this paper. In this
article we only simply add Gaussian noise to the simulated
measurements to test the effect of noise on the reconstruction
results.

5 SIMULATED EXPERIMENTS AND
RESULTS

The geometry of the model used in simulated experiments is
illustrated in Figure 2. The circular domain Ω of diameter 4cm
is full of homogeneous tissue-like medium, which is isotropic,
namely, the anisotropic factor g = 0. Inside the homogeneous
medium a circular absorber of diameter 0.2cm is embedded,
at the position with coordinate (1.2, 0) (unit: cm) where the
coordinate origin is taken at the center of the circular domain
Ω.

The source fibers and detector fibers are arranged uniformly
around the boundary ∂Ω, as illustrated in Figure 2a. The prac-
tical model is illustrated in Figure 2b, in which the domain
Ω is divided into 1644 elements jointed at 887 vertex nodes.
Some elements are selected as heterogeneities and are painted
black in the FEM mesh graphics.

Since the reconstruction of µa is done with arbitrary selection
of D, the reconstructed absorption coefficient distribution is

FIG. 2 Simulation model. (a) Source and detector arrangement, (b) FEM mesh.

not the exact absorption coefficient map, but a contrast absorp-
tion map. Its function is to outline the difference between the
homogeneity, such as healthy tissue, and the heterogeneity,
such as diseased tissue.

It should be stated that in our work µa and D no longer repre-
sent physical optical properties of tissue, but are merely math-
ematical quantities used for reconstruction purposes. In con-
ventional perturbation methods, the selection of the initial es-
timates of µa and D should be limited to regions near their ac-
tual physical value by use of prior information. In this paper,
the chosen initial parameters can be completely out of these
bounds.

In the simulated experiments we assumed the true param-
eters to be as follows: µs = 2 and µa = 0.025 for the
background medium, namely the homogeneous tissue-like
medium (consequentlyD = 0.165); µs = 4 and µa = 0.5 for the
heterogeneity, namely the embedded absorber (D = 0.741)
and g=0 for both background medium and embedded ab-
sorber. The simulated data were derived from the forward
problem of the model shown in Figure 2 and based on the
above mentioned parameters. They were noise-free data. Only
one set of data that was acquired after the absorber had been
embedded into the background medium was used.

The initial estimates were selected as: µ̂a = 0.2 and D̂ = 4.
We can see that they are both far from the true background so-
lutions: µa = 0.025 and D = 0.165. Figure 3 illustrates the
reconstruction results using the perturbation method with-
out the pre-scaling technique, i.e., the conventional perturba-
tion method. The figure demonstrates that the conventional
perturbation method is unable to obtain the desired results
through the above initial estimates.

When the pre-scaling technique was employed, by steps 2 and
3 of algorithm 1, the estimate of µ̂a was adjusted to the same
magnitude of the true solution µa, which is shown in column
one (the column with µa = 0.025 and µ̂a = 0.2) of Table 1.
The initial mean gain factor λmean, written as λ for short, was
selected as 2, and the tolerance ελ for pre-scaling process was
selected as 0.001.
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FIG. 3 Reconstruction results without pre-scaling technique, in the case of the initial

estimates µa = 0.2, D = 4.

µa = 0.025 µa = 0.025
0 λ = 2, µ̂a = 0.2 λ = 2, µ̂a = 0.001
1 λ = 6.1144, µ̂a = 0.0327 λ = 0.0324, µ̂a = 0.0309
2 λ = 1.0463, µ̂a = 0.0313 λ = 0.9878, µ̂a = 0.0312
3 λ = 1.0006, µ̂a = 0.0312 λ = 0.9999, µ̂a = 0.0312

TABLE 1 Pre-scaling process of µ̂a, in the case µ̂a = 0.025 (ελ = 0.001).

µa = 0.075 µa = 0.075
0 λ = 2, µ̂a = 0.2 λ = 2, µ̂a = 0.001
1 λ = 2.5064, µ̂a = 0.0798 λ = 0.0141, µ̂a = 0.0711
2 λ = 1.0633, µ̂a = 0.0750 λ = 0.9526, µ̂a = 0.0746
3 λ = 1.0029, µ̂a = 0.0748 λ = 0.9978, µ̂a = 0.0748

TABLE 2 Pre-scaling process of µ̂a, in the case µ̂a = 0.075 (ελ = 0.001).

As shown in Table 1, the absorption coefficient µ̂a was quickly
(only three iterations) scaled from its initial estimate 0.2 to
0.0312, which is of the same magnitude as the true solution
0.025, and then the scaled estimate can be used in the con-
ventional perturbation method to be iteratively updated. The
reconstruction results are illustrated in Figure 4. As the itera-
tions increase, the reconstruction image gradually approaches
the correct solution. The curve of the objective function is il-
lustrated in Figure 4d. The speed of the convergence depends
on the factor α when the Tikhonov Regularization (step 5 of
Algorithm 1) is performed.

In the above instance, µ̂a � µa. Now let’s investigate the
other extreme situation: µ̂a � µa, in which µ̂a= 0.001. The pre-
scaling process of µ̂a is shown in column two of Table 1. It was
also scaled to 0.0312.

We changed the absorption coefficient µa of the background
medium to 0.075 and maintained the other quantities. The ini-
tial estimate of µ̂a was selected as 0.2 and 0.001 respectively.
We can observe that by the pre-scaling technique, they were
all scaled to the value 0.0748, which is of the same magnitude
as the true solution 0.075. The pre-scaling processes are shown
in Table 2.

FIG. 4 Reconstruction results with pre-scaling technique, in the case of the initial

estimates µa = 0.2,D = 4.

To confirm the effectiveness of the pre-scaling technique un-
der other circumstances, we tested using the following four
sets of initial estimates in the reconstruction: (1)µa = 0.2,D =
10; (2)µa = 0.2,D = 20; (3)µa = 0.02,D = 10; (4)µa = 0.02,D =
0.18. The experiments demonstrated that, without the pre-
scaling technique, only the fourth set of estimates was success-
ful in deriving the desired result, since this set was quite close
to the true solution. The other three sets of guesses were suc-
cessful in deriving the desired results only if the pre-scaling
technique was employed.

Moreover, we have tried various other models to test the pro-
posed technique. For example we changed the location and
size of the heterogeneity, and then various sets of estimates
were employed. The above mentioned conclusion can also be
reached.

This suggests that the pre-scaling technique is an effective im-
provement of the conventional linear perturbation method for
qualitative reconstruction of the absorption map.

To test the effect of noise on the reconstructed results, we
added white Gaussian noise to the simulated data. The data
with 1%, 5%, 10% and 15% noise were used for reconstruc-
tion respectively. In Figure 5 the reconstructed results after 60
iterations are shown. In this simulation, the parameters were
the same as in Figure 4, i.e., the true parameters were: back-
ground medium with µs = 2 and µa = 0.025 (D = 0.165)
and heterogeneity with µs = 4 and µa = 0.5(D = 0.741). The
initial estimates were also selected as: µa = 0.2 and D=4. The
pre-scaling technique was used.

Observing the results shown in Figure 5, we can see that, the
larger the noise, the more gravely the reconstructed embed-
ded absorber deviates from its true solution.

6 DISCUSSION

Reconstruction of diffuse optical images is a non-unique, ill-
posed and underdetermined problem since the number of the
unknown image pixels is much bigger than the number of the
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FIG. 5 Reconstruction results with noise-polluted data, in the case of the initial esti-

mates µa = 0.2, D = 4, iteration 60

known measured data. This significantly influences the image
quality, particularly the spatial resolution. In addition, the per-
turbation method described by Eq. (4) is a linear approxima-
tion to the origin problem (3), in which the terms above first-
order are neglected. This makes the image quality intrinsically
no better than the image reconstructed by full-nonlinear meth-
ods, especially when the terms above the first-order in Eq. (3)
play a relatively important role. Furthermore, the measure-
ment noise is another important factor that corrupts the im-
age quality. One way to improve the resolution of the recon-
structed image is to make use of prior information as much as
possible, for example, take advantage of the anatomical imag-
ing or the physiology information. Another way to improve
the image quality is to reduce the noise contaminating the
measured data. Knowing the derivation of the noise and its
model is very useful to make the measured signal purer.
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