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In this paper a numerical method, based on the well known Floquet–Bloch theory, useful to analyze the physical properties of a PBG based
accelerator, is presented. The proposed model has been developed to analyze a 2D lattice characterized by a generic inclination angle
between the two primitive translation vectors, thus resulting very useful when a periodic structure without an equilateral triangular or
square cell has to be investigated. The numerical method has been optimized in order to account several number of space harmonics with
a low CPU time and memory consumption. Comparisons with more complex numerical methods demonstrate the accuracy of our model.
Several simulations have been performed to find all the geometrical parameters including the inclination angle of the unit cell, filling factor
and index contrast. The proposed method, through an optimization procedure of the photonic band structure, allows to obtain a large
spectral purity, high order mode suppression and high Q–values. [DOI: 10.2971/jeos.2007.07006]
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1 I n t r o d u c t i o n

Recently a significant research on microwave particle acceler-
ator devices for medical applications has received an increas-
ing interest due to the PBG properties to control the light flow
by a periodic plane (2D) arrangement of metallic or dielec-
tric rods placed in a dielectric medium having a different re-
fractive index [1, 2]. These structures are particularly suitable
when modal selectivity and strong field confinement are re-
quired, and very performing resonant cavities characterized
by high Q–factor can be easily designed and realized. One of
the most important characteristics of a PBG–based resonant
cavity is the efficient suppression of the Higher–Order Modes
(HOM) and wakefields. This makes such structures very at-
tractive for their high efficiency and low cost for medical ap-
plications, particularly in the field of the heavy particle accel-
eration to be used in the hadrontherapy for cancer treatment.

A rigorous analysis of the physical effects occurring when a
wave propagates inside a periodic structure requires a com-
plex theoretical investigation, which has to take into account
all the involved geometrical parameters without any concep-
tual approximation.

The Floquet–Bloch theory, applied by the Authors before to
analyze 1D periodic structures on planar waveguide [3, 4] and
after to study the physical properties of optical fiber Bragg

gratings [5, 6], allows to perform fast investigations and the
results are more accurate than those obtained from other nu-
merical methods already compared in a previous work [3].
The numerical approach based on the Floquet–Bloch theory
has next been extended to analyze two–dimensional multi-
layer photonic bandgap structures with a typical triangular
or square lattice [7], where the physical features of the inves-
tigated devices, working at microwave or optical frequency
range, can be optimized in terms of band structure. The for-
bidden frequency range, arising from the periodic geometry
of the photonic device, can be enlarged in order to improve the
spectral purity of a “defect mode” which can be forced inside
the bandgap by removing a dielectric rod and, then, breaking
the periodicity of the crystal. The optimization of the photonic
band structure, achieved in [7] by choosing the best value of
filling factor and dielectric rod permittivity, is relevant only to
the high symmetrical structures characterized by an equilat-
eral triangular or square cell.

In this paper we have improved our method [7] to character-
ize photonic crystals having a lattice with a generic inclination
angle between the primitive translation vectors thus obtaining
a high numerical stability.

To validate our model, some comparisons of the results with

Received October 31, 2006; published January 25, 2007 ISSN 1990-2573



Journal of the European Optical Society - Rapid Publications 2, 07006 (2007) R. Diana,et. al.

those of other more complex methods, such as Finite Domain
Time Division method (FDTD), have been performed. Next
we have applied our approach to a PBG–based particle accel-
erator. All the relationships required to define the Brillouin
region for a 2D lattice with generic unit cell are presented in
section 2. Several numerical simulations and comparisons, re-
ported in section 3, have been performed to evaluate, for the
device under investigation, the best values of geometrical pa-
rameters such as the inclination angle of the unit cell and the
filling factor.

2 T H E O R Y

Figure 1 shows the investigated structure, constituted by cir-
cular section dielectric rods periodically arranged according
to a two–dimensional grating. The dielectric rods, having per-
mittivity εa and embedded in a dielectric medium with per-
mittivity εb, are placed at the vertices of a generic primi-
tive unit cell. The primitive translation vectors a1 and a2 are
noncollinear and inclined at angle γ. The particular cases of
γ = π/2 or γ = π/3 correspond to a square or hexagonal
lattice, respectively.

The charged particles must be accelerated with high efficiency
along a direction (x axis) perpendicular to the periodicity
plane (yz plane), thus requiring the tangential components of
the electric field to vanish everywhere. This field distribution,
also characterized by a magnetic field vector in periodicity
plane (TM mode), can be forced by enclosing the 2D array be-
tween two metallic layers, which are assumed to be lossless.
The device has to be designed to produce an allowed mode
inside a forbidden frequency range, i.e. a bandgap, in order to
improve the spectral purity.

The grating parameters R, a, tg are the rod radius, the lattice
constant (amplitude of the primitive translation vectors) and
rod height, respectively.

FIG. 1 Primitive unit cell with its translation vectors (a) and architecture of the mi-

crowave particle accelerator (b)

The primitive translation vectors a1 and a2 are defined by the
relations:

a1 = −a sin (γ) ŷ + a cos (γ) ẑ
a2 = aẑ

(1)

ŷ and ẑ are the unit vectors along the axes of the periodicity
plane. From the previous assumption it follows that primitive

translation vectors of the reciprocal lattice are given by [8]:

b1 = − 2π
a

1
sin(γ) ŷ

b2 = 2π
a

(
ŷ

tan(γ) + ẑ
) (2)

In order to calculate the photonic band diagram for waves
propagating in a plane perpendicular to the dielectric rods,
we have to expand all the components of the electromagnetic
field according the Floquet–Bloch theorem. To this purpose,
the inverse permittivity function can be expressed in the peri-
odic region (the yz plane) as a Fourier–series:

ε−1(ρ) = ∑
G∈G

ε−1
G (G) ejG·ρ (3)

where G is the generic reciprocal lattice vector. For cylindrical
rods we have:

ε−1
G (G) =

{ 1
εa

f + 1
εb

(1− f ) G = 0

( 1
εa
− 1

εb
) f 2J1(|G|R)

|G|R G 6= 0
(4)

where the filling factor f = aR/aC is the fraction of the area aC
of the unit cell occupied by the area aR of the rod; in our case
it results:

f = π

(
R
a

)2 1
sin(γ)

(5)

According to the Floquet–Bloch formalism, the field compo-
nents can be expressed as the superposition of an infinite
number of space harmonics. Then, assuming Ψξ = Eξ , Hξ

where ξ = x, y, z, we have:

Ψξ(x, ρ) = exp [jK · xx̂] ∑
G∈G

φξ(x,G) exp [j(K + G) · ρ] (6)

being ρ = yŷ + zẑ, x̂ is the unit vector along the x–axis, K is
the complex wave vector characterized by a real part β which
is the propagation constant of the wave and by an imaginary
part α which takes into account the propagation losses due to
Bragg reflection. The summation in Eq. (6) is performed over
all the reciprocal lattice vectors G retained in the calculations.
By substituting Eq. (6) into Maxwell’s equations and taking
into account the Eqs. (3,4), we obtain the following differen-
tial equation in matrix form:

dvt (x)
dx

=
[

O S1
S2 O

]
vt (x) = Mvt (x) (7)

where vt(x) is the column vector whose elements are the tan-
gential components of the electric and magnetic fields Et and
Ht, respectively. As we will show next, in the final model
equations only the matrix S1 is relevant and it’s defined as:

S1 =
1
k0

[
−KG

z ηKG
y KG

z ηKG
z − k2

0I
k2

0I − KG
y ηKG

y KG
y ηKG

z

]
(8)

being k0 the free space wavenumber, I is the diagonal identity
matrix, KG

z and KG
y are diagonal matrices whose elements are

all the vectors KG = K + G along the z and y directions, and
η is the matrix with elements η(n,m) = ε−1

G (Gn − Gm), being
Gn and Gm the n–th and m–th reciprocal lattice vectors, re-
spectively. The solution of Eq. (7) takes the form of a matrix
exponential:

exp
(

M
tg

2

) [
Et (x0)
Ht (x0)

]
= exp

(
−M

tg

2

)  Et

(
x f

)
Ht

(
x f

)  (9)

where x0 and x f are the coordinates of the bottom and top
metal plate, respectively.
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Since the matrix M assumes the special block–form given in
Eq. (7), the matrix exponential can be represented in power
series:

exp
(
±M

tg

2

)
= ∑

n

t2n
g

(2n)!

[
Pn

12 ± tg
2n+1 Pn

12S1

± tg
2n+1 Pn

21S2 Pn
21

]
(10)

where Pij = SiSj is the matrix having size 2Nvectx2Nvect, be-
ing Nvect the number of reciprocal vectors retained in calcula-
tions. By combining the previous Eqs. (9,10) and applying the
boundary conditions on each ideal metal layer (i.e. Et(x0) = 0,
Et(x f ) = 0), we have:∑

n

t2n+1
g

(2n + 1)!

√
t2
g

4
P12

2n
 S1Ht (x0) = 0 (11)

where Ht(x0) = Ht(x f ), as expected, being our structure sym-
metrical. As already stated, the S2 matrix does not contribute
further to model equations.

Finally, the summation in Eq. (11) is the series expansion of
the function sinh(z1/2)/(z1/2) applied to the complex matrix
(tg/2)2P12 and since this function does never vanish, the only
nontrivial solutions of Eq. (11) can be found by solving:

det (S1) = 0 (12)

where S1 is a 2Nvectx2Nvect matrix. We can obtain a further nu-
merical improvement by applying the following well known
relationship holding for a 2x2 structured block matrix:

det
([

A B
C D

])
= det (A) · det

(
D − CA−1B

)
(13)

where A, B, C, D are matrices, and the term D−CA−1B is the
Schur complement of the block A [9]. By using the Eq. (13), the
Eq. (12) becomes, after some calculations:

det
[([

KG
z

]2
+

[
KG

y

]2
)

η− k2
0I

]
= 0 (14)

which is a typical eigenvalue problem, easily solvable by us-
ing some efficient numerical methods. Moreover, the previous
manipulation (13) halves the order of the matrices, thus im-
proving the stability of the numerical approach which results
fast and accurate also when a significant number of recipro-
cal vectors is retained in the calculations. After evaluating the
edges of the irreducible Brillouin region, we have solved the
Eq. (14) to investigate the photonic band diagram for the only
TM–modes supported by the structure, as in the following sec-
tion.

3 N U M E R I C A L R E S U L T S A N D
C O M P A R I S O N S

In order to obtain a given precision, we firstly need to evalu-
ate the number of reciprocal grating vectors G to be retained
in the calculations. In our numerical implementation the odd
number Nvect of the retained reciprocal vectors is expressed
as Nvect = (2Nmax + 1)2, being Nmax a positive integer num-
ber. The numerical simulations, performed to calculate the

first five bands of a 2D photonic crystal arranged as a square
(γ = π/2) or hexagonal (γ = π/3) lattice having circular
rods (R = 0.182a, εa = 9) in air (εb = 1), reveal a relative
error reduction of about 0.35% on the high order mode when
the number of reciprocal vectors increases from Nvect = 625
(i.e. Nmax = 12) to Nvect = 729 (Nmax = 13). Therefore, if
the bandgap is localized between low order modes, as in our
cases, we do not require any further improvement in terms of
precision and Nvect = 729 reciprocal vectors is a good choice.
We have implemented our model in GNU Octave high level
language, running on a PC with 2.6 GHz Intel CPU and 1 GB
RAM, platform based on a FEDORA–Red Hat 3 OS. The ap-
plication of the Schur complement (13) allows to calculate the
first five photonic bands on the irriducible Brillouin region in
less then five minutes, also when a considerable discretization
of the K axis (46 points) is used.

To validate our calculations, we have investigated the pre-
vious structure with the highly complex and accurate FDTD
method [10], and compared the results with those obtained
by using our numerical approach. As well known, the FDTD
is rather difficult to be used to evaluate the band diagrams
[11, 12] since it requires a very small discretization step both
in time and frequecy domain. An important aspect is that the
FDTD can fail at the symmetry points of the Brillouin zone,
where some bands are degenerate and only one eigenvalue
can be found.

Figure 2 shows the band diagram of the photonic crystal,
based on a cubic lattice, computed by using our method
(solid lines) and FDTD (crosses), and an excellent agreement
is reached for each mode.

FIG. 2 Band diagram for a cubic lattice (R = 0.182a, εa = 9, εb = 1) computed by

using our method (solid) and FDTD (crosses).

In Table 1 we have reported the absolute and the percentage
relative error for each of the five computed modes.

Band E e%
1 ˚ ≤ 10−2 2.6
2 ˚ 0.02 3.4
3 ˚ 0.03 4.1
4 ˚ 0.03 4.1
5 ˚ 0.04 4.1

TABLE 1 Absolute and percentage relative error for each of the five computed modes.
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As discussed before, the large number of reciprocal grating
vectors (Nvect = 729) provides a very small error in our nu-
merical computation and the slight discrepance with FDTD
results especially in the high order modes is due to the diffi-
culty to optimize the input parameters required by the latter
approach. We have also compared the two numerical meth-
ods in the investigation of a photonic crystal with hexagonal
lattice arrangement, as shown in Figure 3, and a very good
agreement can be observed also in this case. In this diagram
several crosses are missing, and this aspect is due to the typ-
ical convergence problems of the FDTD near the symmetry
points. The maximum relative error is lower than 4%, the dis-
crepance relevant the third mode at the Γ point, where a de-
generate point exists.

FIG. 3 Band diagram for a triangular lattice (R=0.182a, εa = 9, εb = 1) computed by

using our method (solid) and FDTD (crosses)

After the accuracy of our formulation has been discussed, we
now apply the approach to analyze some photonic structures
characterized by a generic angle γ of inclination between the
two primitive translation vectors. We derive easily the sym-
metry points of the irreducible Brillouin zone, as shown in
Figure 4.

FIG. 4 Brillouin zone and irreducible Brillouin zone for generic inclination angle.

Because of the generic angle between the two primitive vec-
tors, the Brillouin zone appears tilted and characterized by

only two symmetry axes. This aspect provides a rather large
irreducible region, characterized by four vertices, as shown in
Figure 4.

The vertices of the irreducible Brillouin region can be easily
calculated through the following relationships:

Γ = O

N = + π
a ẑ − π

a
1−cos(γ)

sin(γ) ŷ

P = + π
a

1
1+cos(γ) ẑ − π

a
1

sin(γ) ŷ

Q = −π
a

1
1+cos(γ) ẑ − π

a
1

sin(γ) ŷ

(15)

The Brillouin zone becomes highly symmetrical for only two
angles, γ = π/3 (hexagonal lattice) and γ = π/2 (square
lattice): in these cases the irreducible Brillouin region can be
further reduced giving a simple triangle, characterized by the
canonical three symmetrical points Γ, M, K (triangular lattice)
or Γ, M, X (square lattice).

The device designed is a PBG particle accelerator operating
at about 15 GHz. The designed parameters values are: a =
0.00858 m, R = 0.00156 m, tg = 0.00460 m, εa = 9, εb = 1.

We have retained 225 harmonics in calculations, since a fur-
ther increase of the harmonic number does not change signif-
icantly the results.

The first simulation is performed for an angle of inclination
γ = 45o, which corresponds to the Brillouin region depicted in
Figure 4. The Photonic Band diagram, illustrated in Figure 5,
shows a relatively large bandgap which extends from 13.4
GHz (i.e. ωa/2πc = 0.38) to 17.4 GHz (i.e. ωa/2πc = 0.50).
The filling factor, defined by the Eq. (5), in this case is equal to
0.147 and provides a width of the first bandgap ∆G = 0.12.

FIG. 5 Photonic band diagram for the only supported TM–modes of the structure char-

acterized by a column permittivity ea = 9 and filling factor f = 0.147.

We can improve the extension of the bandgap by choosing
an optimal value of the filling factor, as sketched in Figure 6,
which shows a maximum width of the bandgap occurring at
a low value of the filling factor ( f = 0.147). By changing the
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angle γ of inclination we can obtain a further enlargement of
the bandgap, as clearly shown in Figure 7, where the width of
the forbidden frequency range has been plotted as a function
of the filling factor for several values of γ.

FIG. 6 The bandgap as a function of the filling factor.

FIG. 7 Bandgap as a function of filling factor for several values of the angle of inclina-

tion γ.

As depicted in the diagram, the maximum value of the
bandgap width strongly depends on the inclination angle, and
this behavior is confirmed by the Figure 8 where the optimal
bandgap extension has been represented as a function of γ.
Figure 8 also shows a repetition of the curve starting from the
angle γ = π/3 and a good choice for the angle should be
γ ≤ 0.6.

Figure 9, which is related to a periodic structure character-
ized by an angle of inclination γ = 0.4 radians, shows the
bandgap width as a function of the filling factor for several
values of rod dielectric constant εa. The increase of the rod
permittivity εa produces an enlargement of the bandgap but
does not change remarkably the value of filling factor in which
the maximum occurs.

FIG. 8 The bandgap as a function of the angle of inclination γ at the optimum value

of the filling factor.

FIG. 9 Bandgap as a function of the filling factor for several values of cylinders dielectric

constant εa.

For a large value of rod dielectric constant (εa = 20) we have
chosen the optimal value of filling factor ( f = 0.15) from the
Figure 10, and applied it to perform the calculations of the
Photonic Band diagram illustrated in Figure 11.

FIG. 10 Bandgap as function of the filling factor for γ = 0.4.
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FIG. 11 Photonic Band diagram for a periodic structure with γ = 0.4 and rod permit-

tivity εa = 20

4 C O N C L U S I O N S

We have presented a numerical method, based on the well
known Floquet–Bloch theory, useful to analyze the physical
properties of a PBG based accelerator, working at microwave
frequency range. So far, models based on the Floquet–Bloch
theory and oriented to analyze PBG structures have been ap-
plied only to highly symmetrical lattices, characterized by
hexagonal or square unit cells and in the literature different ty-
pologies are not considered. Our model, on the contrary, takes
into account a large number of geometrical parameters and,
in particular, the inclination of the unit cell which can assume
any value in the range 0–90 degrees.

The model and its numerical implementation is characterized
by the absence of any a priori assumptions, thus allowing
a fast ad accurate determination of several informations on
the design parameters required to optimize the device perfor-
mances.

We have compared our method with the well known and ac-
curate FDTD, which is not suitable for analyzing structures
with generic inclination angle, since the boundary conditions
on the method require a rectangular numerical domain in
which the computation has to be processed. As well known,
a lattice characterized by a generic unit cell cannot always be
reduced to a square or rectangular domain. This aspect limits
the use of the FDTD with respect to our method.

The comparisons show a small shift of about 4% on the high
order modes, we have applied the method to investigate the
influence on the photonic band structure of the angle between
the two primitive translation vectors, the filling factor and the
rod permittivity. Best results in terms of bandgap width can
be obtained by choosing an inclination angle smaller than γ =
0.6, a value significantly smaller than that of the conventional
lattice with hexagonal symmetry.
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