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The pronounced light–matter interactions in photonic crystals make them interesting as opto–fludic "building blocks" for lab–on–a–chip
applications. We show how conducting electrolytes cause dissipation and smearing of the density–of–states, thus altering decay dynamics
of excited bio–molecules dissolved in the electrolyte. Likewise, we find spatial damping of propagating modes, of the order dB/cm, for
naturally occurring electrolytes such as drinking water or physiological salt water. [DOI: 10.2971/jeos.2006.06032]
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1 I n t r o d u c t i o n

With the emerging field of opto–fluidics [1] there is an in-
creasing attention to liquid–infiltrated photonic crystals and
the development has to a large extend been powered by their
potential use as bio–chemical sensors [2]–[9]. Generally speak-
ing, photonic crystals are strongly dispersive artificial materi-
als, first suggested in 1987 by Yablonovitch [10] and John [11],
where a periodic modulation of the dielectric function causes
strong light–matter interactions for electromagnetic radiation
with a wavelength comparable to the periodicity of the ma-
terial. Typically, photonic crystals are made from a high–
index dielectric with a periodic arrangement of voids. Alter-
natively, free–standing high–index dielectric structures may
be utilized.

From a sensing point of view, light is an often utilized probe
in analytical chemistry and for miniaturized lab–on–a–chip
implementations, combining microfluidics [12, 13] and optics,
there is a strong call for enhanced light–matter interactions
compensating for the reduced optical path length. Liquid–
infiltrated photonic crystals are obvious candidates for this
where e.g. Beer–Lambert–Bouguer absorbance cells may ben-
efit from slow–light phenomena [14]. Alternatively, weak per-
turbations in the liquid refractive index may cause consid-
erable shifts in electromagnetic modes, thus making liquid–
infiltrated photonic crystals promising candidates for refrac-
tometry [9].

Most bio–chemistry quite naturally occurs in the liquid phase
and typically the host environment is a conducting electrolyte.
In fact, even highly purified water will be weakly conducting
due to the dissociation of water molecules (H2O) into hydro-
gen (H+) and hydroxide (OH−) ions. In this paper we con-

sider the effect of Ohmic dissipation and broadening of levels
in liquid infiltrated photonic crystals.

2 T H E O R Y

We first consider the general case of a photonic crystal where
the unit–cell of the periodic structure is composed of a solid
high–index dielectric (d) material surrounded or infiltrated by
a liquid (l). The corresponding relative dielectric function is
given by

ε(r) =


εd , r ∈ Vd,

ε l + i σ
ω , r ∈ Vl .

(1)

where the complex dielectric function of the liquid is quite
similar to the Drude model often employed for the response
of metals at optical frequencies. For liquids it is an adequate
description of bulk properties, thus neglecting possible sur-
face chemistry and Debye–layer ion accumulation at the in-
terfaces to the high–index material. Electro–hydrodynamics
where momentum is transferred from the ionic motion to the
fluid (see e.g. Ref. [15] and references therein) is also strongly
suppressed for optical frequencies, since the Debye screening
layer forms too slowly in respond to the rapidly varying op-
tical field. It is common to introduce the Debye response time
τD = ω−1

D = ε l/σ and for typical electrolytes, τD is less than
a micro second corresponding to a Debye frequency in the
megahertz regime. For optical frequencies, ω � ωD, it is thus
fully adequate to treat the imaginary part in Eq. (1) perturba-
tively. The unperturbed electromagnetic modes are governed
by the following generalized eigenvalue problem for the elec-
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trical field

∇×∇×
∣∣Em

〉
= ε

ω2
m

c2

∣∣Em
〉

(2)

where ωm is the eigenfrequency of the mth mode, c is the
speed of light in vacuum, and ε(r) = limσ→0 ε(r) is the un-
perturbed dielectric function characterizing the electromag-
netic problem in the absence of conduction. In the follow-
ing the unperturbed eigenmodes are normalized according to〈

En
∣∣ε∣∣Em

〉
= δnm where δnm is the Kroenecker delta. From

standard first–order perturbation theory, the effect of a finite
conductivity leads to an imaginary shift in the frequency,

∆ωm = −ωm

2

〈
Em

∣∣i σ
ωm

∣∣Em
〉
Vl〈

Em
∣∣ε∣∣Em

〉
Vl+d

(3)

where the integral in denominator is restricted to the liq-
uid region Vl while the integral in the nominator is over all
space, i.e. Vl+d = Vl + Vd. Introducing the displacement field∣∣Dm

〉
= ε

∣∣Em
〉

we may rewrite the result as

∆ωm = − i
2

ωD × fm, fm ≡

〈
Em

∣∣Dm
〉
Vl〈

Em
∣∣Dm

〉
Vl+d

(4)

where fm is the fraction of dielectric energy localized in the
liquid. Obviously, fm is a key parameter for refractometry ap-
plications of liquid–infiltrated photonic crystals. For void–like
structures in the evanescent field sensing limit, f will be of the
order of a few percent, while for pillar–like structures the op-
tical overlap with the liquid can be larger than 50%, thus facil-
itating a much higher sensitivity to refractive index changes
in the liquid [9]. For Beer–Lambert–Bouguer absorbance cells,
the slow–light enhancement also quite naturally scales with
f [14].

In this paper we will explore two consequences of the small
imaginary shift in the frequency caused by the small imagi-
nary Ohmic term in Eq. (1). One first obvious consequence is
of course the Ohmic damping. Mathematically, the imaginary
shift in frequency may via the chain–rule be transformed into
a small imaginary shift ∆κ in the Bloch wave vector κ. The cor-
responding damping parameter α = 2∆κ of the Bloch modes
then becomes

α =
f ωD
vg

(5)

where vg = ∂ω/∂κ is the unperturbed group velocity. The
attenuation will thus quite intuitively increase with a slowing
down of the electromagnetic mode near photonic–band edges.
Modes with a large optical overlap with the liquid of course
suffer most from Ohmic dissipation as reflected by the pro-
portionality of α to f .

Another consequence of the Ohmic conduction is reflected in
the photonic density of states. Quite intuitively, dissipation is
linked to a life–time broadening of the electromagnetic states
and in the density of states this leads to a smearing of sharp
features and even an induced density of states in the gaps
where no states exist in the absence of conduction. To see this
explicitly we start from the following definition of the density
of states

ρ(ω) ∝
∫

Vl+d

dr Im{ω Tr G(r, r, ω)} (6)

where G is the Green’s tensor [16, 17] defined in accordance
with Eq. (2) and the trace is to sum over the three directions.
The density of states is of particular interest to dipole radi-
ation from e.g. excited bio–molecules dissolved in the liquid
where the decay rate of the excited state of the molecule is
proportional to the electromagnetic density of states. From the
Green’s tensor G we get the standard result

ρ(ω) =
1

VBZ
∑
m

∫
BZ

dκ
2
π

Im
{

ω

ω2 −ω2
m(κ) + iη+

}
(7)

with an infinitesimal broadening by η+ of the electromagnetic
levels. The normalization is given by the volume VBZ =

∫
BZ dκ

of the first Brillouin zone. For a vanishing σ the eigenfrequen-
cies ωm are real and we get the well–known expression

ρ0(ω) =
1

VBZ
∑
m

∫
BZ

dκ δ [ω−ωm(κ)] (8)

where δ(x) is the Dirac delta function. For a small but finite σ,
first–order perturbation theory in the frequency squared (first
order in ωD) gives ∆(ω2

m) = −iωmωD f so that

ρ(ω) =
1

VBZ
∑
m

∫
BZ

dκ
2
π

Im
{

ω

ω2 −ω2
m(κ) + iωDωm(κ) fm(κ)

}
(9)

corresponding to a finite broadening of the order ωD. Note
how some states are broadened more than others depending
on the filling fraction and eigenfrequency.

Along with the broadening there will be an induced density
of states ρPBG in the band–gaps where no states were available
in the absence of conduction. To see this we consider the cen-
ter of a band–gap of width ∆Ω. The induced density–of–states
originates mainly from the upper and lower band edges with
the frequency and the filling factor evaluated at the edge of
the Brillouin zone. From the corresponding tails we get the
following for the induced density of states

ρPBG ∝
ωD

(∆Ω)2 (10)

demonstrating the competition between the two frequency
scales given by the Debye frequency and the with of the band
gap.

3 N U M E R I C A L R E S U L T S

In following we illustrate the above general results by numer-
ical simulations for a particular photonic crystal structure. For
the simulations of Eq. (2) we employ a freely available plane–
wave method [18]. As an example we consider the TM modes
of a square lattice of high–index rods with diameter d/Λ = 0.4
and εd = 10.5 and for the liquid ε l = (1.33)2, see panel (c) in
Figure 1. Panel (a) shows the band structure and the corre-
sponding density of states is shown in panel (b) for different
values of the Debye frequency. The overall effect of the con-
ductivity is obviously to smear out sharp features as well as
to introduce states in the band–gap region of the unperturbed
problem, see panel (d).
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FIG. 1 Liquid infiltrated photonic crystal, see Panel (c), with a square lattice of high–

index rods with diameter d/Λ = 0.4 and εd = 10.5 and for the liquid ε l = (1.33)2.

Panel (a) shows the photonic band structure for TM modes along the high–symmetry

directions in the 1st Brillouin zone and panel (b) shows the corresponding photonic

density of states. The filled curve shows the density of states in the absence of con-

duction while the superimposed curves are for ωDΛ/(2πc) = 0.01, 0.05, and 0.1.

Panel (d) shows the induced density of states in the center of the photonic band gap.

The data points correspond to the superimposed curves in panel (b).

In Figure 2 we consider a line–defect waveguide structure
where a single line of rods has been removed. Panel (a) shows
the dispersion of the waveguide mode (blue solid line). As
indicated by the color shading, broadening of the mode is
more pronounced near the band edges compared to the cen-
tral part of the band. Panel (b) shows a corresponding increase
in Ohmic attenuation near the mode–band edges. For natu-
rally occurring electrolytes the attenuation will be of the order
dB/cm in the center of the band while highly purified water
will result in an almost negligible attenuation.
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FIG. 2 Liquid infiltrated line–defect photonic crystal waveguide with a square lattice of

high–index rods, see Panel (c), with diameter d/Λ = 0.4 and εd = 10.5 while for the

liquid ε l = (1.33)2. Panel (a) shows the photonic band structure (blue solid line) for

propagation of TM polarized light along the ΓX direction in the line–defect waveguide.

The color shading indicates the broadening of the line due to a finite conductivity

while the grey shading indicates the finite density–of–states in the photonic crystal

due to the projected bands in the Brillouin zone. Panel (b) shows the Ohmic atten-

uation for two different values of the conductivity corresponding to highly purified

water (dashed line) and typical drinking water (solid line). The right y–axis shows the

results in terms of the free–space wavelength when results are scaled to a structure

with Λ = 420 nm. Panel (c) shows the electrical field of the waveguide mode at the

Γ–point κ = 0.

4 C O N C L U S I O N

In conclusion we have studied the influence of Ohmic dis-
sipation on the attenuation and level broadening in liquid–
infiltrated photonic crystals. Our general results may readily
be applied to other types of liquid–infiltrated photonic crys-
tals such as three–dimensional opal structures as well as quasi
two–dimensional membrane structures. Our results illustrate
that attention should be paid to Ohmic dissipation and broad-
ening for opto–fluidic applications of photonic crystals in e.g.
lab–on–a–chip systems. One quite interesting consequence is
the influence of the electrolyte conductivity on the decay dy-
namics of excited bio–molecules dissolved in the electrolyte.
Similarly to the observations for quantum dots in ordinary
photonic crystals [19], we expect that spontaneous emission
rates of bio–molecules can both be either suppressed (in band–
gap regions) or enhanced (e.g. by van Hove singularities) de-
pending on the lattice parameter and the photonic crystal de-
sign. Potentially, the latter could be used to enhance inher-
ently weak signals of liquid–dissolved bio–molecules. Strong
spectral features in the density–of–states are a necessary con-
dition for this and the present work addresses the degree of
persistence of such features in the case of typical electrolytes.
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