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Future astronomical space missions will comprise a constellation of several optical telescopes to detect exo-planets by interferometric
nulling of starlight. The Darwin mission of the European Space Agency (ESA) and NASAs Terrestrial Planet Finder Interferometer both consist
of a free-flying collection of telescopes and a beam combiner. As such, the constellation provides a co-phased array of telescopes that
can also be used for aperture synthesis imaging. This imaging technique relies on recording intensity interference patterns, in which the
layout of the beam combination optics and the detector play a key role. Several designs for beam combination have been proposed in the
literature. In this article, we compare these beam combiners by rigorously simulating the imaging process of a weak stellar source, taking
into account the photon arrival statistics, an imperfect detection process and the image reconstruction from the recorded data. The results
are presented as the to be expected reconstruction error in the luminous intensity distribution function of a wide-field stellar source versus
the provided amount of photons. Using these results, the optimum design of the combination beam combiner and detector array can be
identified. [DOI: 10.2971/jeos.2006.06020]
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1 I n t r o d u c t i o n

With successful optical stellar interferometers in operation on
Earth, stellar interferometry has proven to be a valuable ob-
servation technique [1]–[3]. Two or more telescopes observe
the same source and, by coherent combination of the collected
radiation, information is gained about the source with an an-
gular resolution directly related to the separation of these tele-
scopes, rather than the diameter of a single telescope.

In the near future, space-based stellar interferometers will be
constructed to detect signals from possible Earth-like plan-
ets around nearby stars. The Darwin mission of the European
Space Agency (ESA) aims at such a constellation of telescopes
[4]. Another space-based interferometer will be the Terrestrial
Planet Finder Interferometer or TPF-I by NASA. The value of
these missions can be greatly expanded by the addition of an
imaging mode, allowing aperture synthesis imaging next to
the nulling task [5]. With baselines in the case of Darwin in the
order of hundreds of meters, these imaging observations can
provide information on young stellar objects with unprece-
dented accuracy. This may answer questions about the origin
of galaxies and planetary systems.

Optical stellar interferometry is characterized by the record-
ing of intensity interference patterns from a stellar source. In
general, the interference pattern has a limited extent due to
the passband of optical frequencies that are recorded. With-

out fringes, the combination is incoherent and besides a larger
light collecting area, this is not improving the imaging. Un-
like the practice in radio astronomy, the selection of a single
frequency is impossible and noise-free amplification of col-
lected electro-magnetic fields at each telescope does not ex-
ist. Another difference is the field-of-view (FOV). An optical
telescope has a FOV of many times the size of the diffraction-
limited spot, or point spread function (PSF). Radio interfer-
ometry relies on imaging within a single PSF and mosaicing
a field together. Conventional imaging with a single optical
telescope can provide a picture, e.g. from a CCD-camera, of a
much wider field. In optical interferometry, the goal is to im-
age a field possibly as large as that of a single telescope having
the resolution of the interferometer array.

It is our goal to treat all interferometers, or rather the beam
combiners that identify them, as optical imagers. This allows
coverage of polychromatic observations as well as wide-field
interferometry in a straightforward manner. As detailed in a
previous publication, the effects addressed by partially coher-
ent imaging are covered [6]. The occurrence of discontinuous
optical surfaces or complicated beam relay optics—as these
occur in some of the beam combiner concepts—poses no lim-
itation to our approach, whereas a treatment with the theory
for partially coherent imaging (e.g. using Hopkins’ formula-
tion [7])—the usual foundation for describing interferometric
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imaging—would require an intensive mathematical formula-
tion. However, such an approach is possible [8] and should be
considered when time consumption by the presented purely
numerical approach poses a limiting factor in the design pro-
cess of an interferometer.

The theory and simulations presented in this paper assume
a space-based array of telescopes operating at the diffraction
limit. A study of the occurrence of aberrations and the ap-
plicability to Earth-based interferometers can be found in the
literature [8]. The analysis and simulations described in this
article have a limited complexity for ease of presentation. A
two-element interferometer is considered, delivering high an-
gular resolution in only one direction. The simulated stellar
source has a complicated and fine spatial structure. The as-
sumed and collected spectrum is broad banded, but constant
over the source.

2 M O D E L I N G

This section will describe the one-dimensional model used in
the simulation. Our analysis starts with the observation that
a stellar source can be considered as an incoherent collection
of point sources, originating from a range of directions θin.
Any optical imager—either monolithic or interferometric—
delivers an intensity response at the detector as a function of
θout. Interferometers are equipped with a delay line, causing
the intensity response to be a function of the delay d as well.
Figure 1 shows four sketches of common beam combiner op-
tics for stellar interferometers.

A. Michelson B. Staircase C. Densified D. Homothesis

Staircase mirror
in intermediate
focus

Relay optics

Co-Axial interferometers Multi-Axial interferometers

FIG. 1 Sketches of four stellar interferometers as described in the literature. Note that

Michelson’s experiments on stellar interferometry were performed with a configura-

tion similar to sketch C. The label Michelson as used here and in the literature refers to

the co-axial Michelson–Morley interferometer. Configuration D is commonly addressed

as a Fizeau interferometer, but it should be noted that Fizeau experimented with a

masked aperture; no beam relay optics were needed.

Table 1 provides the parameters that characterize these four
beam combiners.

Homothetic DensifiedMichelsonStaircase

Axiality multi multi co-axial co-axial
Recombination Bout = B(k)

in /MBout = 4D Bout = 0 Bout = 0
Magnification M = 1 M = 1 M = 1 M = 1
Fringe encoding θout θout, d d d

TABLE 1 Characterization of the beam combiner optics in the interferometers under

consideration.

The item fringe encoding refers to whether the fringed intensity
distribution on the detector is to be measured as a function
of delay d and/or as a spatial variation across the detector in
direction θout. The fringed intensity output delivered by the
beam combiners can be described by a single analytical ex-
pression, needing only a small modification to deal with the
discontinuity present in case B, where a staircase-shaped mir-
ror is present. As indicated in Figure 2, the general Fraunhofer
(far-field) intensity output from a two-element interferometer
caused by a single infinitely small point source is given by

Ik(θout, d) = 4D2sinc2
[

Dπ

Mλ
(θout − Mθin)

]
·

cos2
[π

λ
(Boutθout − B(k)

in θin + d)
]

. (1)
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FIG. 2 This illustration indicates the coordinates used in the derivation of the point-

source response functions for all types of beam combination (any Bout ≥ 0), when

a general beam compression by a factor M is applied in each arm. The diffraction

integral is constructed symmetrically, leading to a compact expression. The phase dif-

ferences at the collection plane x′ are indicated with black arrows at the locations

numbered 1, 2 and 3. After beam compression, the phase slope in an aperture in the

plane x is proportional to −xMθin. The arrow at location 2 indicates that for proper

exit pupil placement at a separation B(k)
in /M the light paths of a masked aperture

are followed, since the wavefronts in the apertures are part of a single wavefront.

Generally, see indicator 3, the aperture separation after beam relay is Bout, which is

zero for co-axial beam combination. As a result, the wavefronts in the exit apertures,

see indicator 3, are parallel to the dotted line −xMθin but have an off-set. As a

result, a diffraction integral can be constructed, in which the phases proportional to

[−xMθin ± 1
2 (B(k)

in /M − Bout)Mθin] occur.

Here, the kth collection baseline B(k)
in and telescope diameter D

are parameters of the array, independent from the beam com-
biner. The response is further governed by the magnification
or beam compression M, the recombination baseline Bout and
the wavelength λ.

A previous publication [6] describes the properties of the
Ik(θout, d) response in Eq. (1) for a two-element interferome-
ter in the cases of Homothetic imaging [9], Densified pupil
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imaging [10], co-axial Michelson imaging [11] and Staircase
imaging [12]. The collection of point sources in the FOV is
expressed as a luminous intensity function L(θin), causing
a sum of intensity patterns on the detector. Performed (and
weighted) for many wavelenghts λ, polychromatic fringes
with limited extent arise. We state again that the function
L(θin) is taken wavelength-independent in these simulations.
The theoretical intensity pattern, however, will only be de-
tected as such in abundance of photons. A noise model will
be implemented to describe the detected signal as a function
of the amount of photons arriving from the stellar source.

Optical interferometers observe weak stellar sources and are
therefore said to operate in the photon-starved regime. To ad-
equately simulate low-light level observations, a noise model
considering the statistics of photon arrival is necessary. More-
over, since the detected data are the start of an inversion pro-
cess, these data should represent realistic noisy recordings
since the inversion and hence the final image formation shall
be limited by the noise level in the recordings. Therefore, the
noisy read-out process of an infrared detector array is also
simulated.

The analytical expressions for the intensity detector response,
derived in Eq. (1), predict the ‘image’ that the detector array
will observe. However, this pattern will only be observed for
very bright sources, when unlimited amounts of photons are
available. The response of a weak source, such as the astro-
nomical objects of interest, is better expressed by taking into
account the arrival of photons from the object, at a certain lo-
cation and at certain time intervals [13]. Figure 3 illustrates
this for an increasing number of arrival events.

max. 1, tot. 10
2

max. 4, tot. 10
4

max. 16, tot. 10
5

max. 883, tot. 10
7

FIG. 3 A polychromatic fringe pattern I(θout, d) out of a co-axial two-aperture interfer-

ometer. The images from left to right show observations of the theoretically predicted

fringe pattern, moving from a photon-starved to a photon-rich regime. The maximum

amount of photons per bin is indicated (max.) as well as the provided total amount

of photons (tot.). These examples exhibit zero detector noise.

The analytical intensity distribution I(θout, d) is now seen as
a likelihood distribution over space and time, where time in
this case (co-axial combination) is the applied delay d. Time-
dependency stems from the shot-noise, which is the arrival
probability of a photon. This probability follows Poissonian
statistics. The analytical intensity response defines the aver-
age fluxes in all bins (‘tiles’ in (θout, d)-space), being pixels and
delay settings. For each bin, with its average flux, the number
of photons per readout (after an integration time tint) is then
discretized, in such a way that the total number of photons is
a specific desired amount Ntot, that can be chosen to match the
integration time tint and the magnitude mv of the stellar object.
The simulated amount of photons per bin (pixel and delay) is
then returned, based on the calculated average amount, by an

implementation of the Poisson statistics, as described in Nu-
merical Recipes [14]. A few examples are depicted in Figure 3.

Thermal radiation of other origin than the stellar object, for
example warm telescope optics, cause the presence of back-
ground counts, which are also Poisson distributed. Readout
noise (the electronics register non-existing photons) further
contributes to the degradation of the acquired images. This
noise is characterized as a Gaussian random process. Since
the radiation from the object and the background are indis-
tinguishable and follow the same statistics, there is no need
to account for this noise in the simulations, other than taking
a source L(θin) that incorporates a certain background level.
For the readout noise, an actual camera should be considered,
in order to arrive at a sensible mean value for the amount of
electrons (photon arrival events can also be expressed in elec-
trons) added to the detected count, and a proper standard de-
viation. As an example, the IRAC camera for the Spitzer Space
Telescope is considered [15, 16]. The measured total readout
noise can be taken to have a mean µ = 15 electrons (e−) and
a variance σ2 = 8 e−. Note that these values are depending
on gain settings and numerous device-dependent parameters.
The mean value is usually subtracted from the data, which
may result in negative values or counts in the detected sig-
nals.

It should be noted that in interferometry, ‘background’ signal
is also generated by the source itself. In a polychromatic sit-
uation, the ‘incoherent’ tails of two fringe packets from two
closely separated point sources may cause the summed inten-
sity pattern to have a large non-modulating component. For
the detector signal, only the modulating part holds the infor-
mation for high resolution. The background hence contains
‘non-information’, but the classical definition of background
would be ‘information from elsewhere than the source’.

2 . 1 S i m u l a t i o n s
A set of simulations is performed in order to predict the imag-
ing performance of the Darwin array. The array under con-
sideration is a two-element configuration, generating a one-
dimensional, high-resolution estimate of the luminous inten-
sity distribution on the sky L̂(θin). The simulations are per-
formed at the ultimate values allowed by the software and the
computer. Since a linear system of equations lies at the basis of
the simulation process, large values of the field-of-view (FOV)
and ultimate angular resolution generate matrices that reach
the storage capacity of the internal memory of the computer
on which the simulations are run, in our case a desktop Pen-
tium IV with 500 MB internal memory. For that reason, the
following simulations do not reach the requirements for the
DARWIN imaging mission, listed in the literature [4]–[8]; the
achieved angular resolution is 71 nrad, whereas the require-
ment was 0.005” or 24 nrad. For the comparison this is com-
pletely irrelevant, since it relates physically to the locations
of the collecting telescopes, which are the same for the four
imaging methods.

The original source function or luminous intensity distribu-
tion L(θin) is taken to be a cross-section of the object HH47.
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In Figure 4, the function L(θin) is depicted, together with the
point-spread function (PSF) of a single telescope.

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

2.5

L
(θ

0
) 

a
.u

.

θ
0
 D/λ [−]

FIG. 4 The function L(θin) is a normalized cross-section through an image of the object

HH47 (gray line). Its angular extent is chosen to span 11 incoherent PSFs; one single

PSF is indicated with the black line. The details to be reconstructed in L̂(θin) are much

smaller than the incoherent PSF or the resolution of a single telescope. The vertical

axis is of arbitrary units (a.u.).

The source function is chosen to span approximately 11 PSFs.
The characteristics of the different beam combiners are listed
in Table 1. The magnification or beam compression M = 1
is chosen for simplicity. The detector array has the same an-
gular span as the source function. The telescope diameter is
D = 3.5 m. The baseline lengths B(k)

in at which snapshots are
taken, are then given as

B(k)
in =

{
2D k = 1
4(k − 1)D k = 2, 3, . . . , 9.

(2)

The baseline length differences of 4D seem to be large, but
with an observational bandwidth for which 6 µm ≤ λc ≤
10 µm, this set of baselines leads to a spatial frequency cover-
age with no gaps up to the desired ultimate spatial frequency,
expressed as angular wavenumber, given by

Bin,max

λc
=

112
8 · 10−6 = 1.4 · 107[rad−1]. (3)

The frequency coverage is illustrated in Figure 5.
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FIG. 5 To check the coverage of spatial frequencies, monochromatic homothetic PSFs

are calculated for λ = 6, 7, 8, 9, 10 µm and the baseline lenghts B(k)
in of expression

Eq. (2). Summing the intensity PSFs over all k, the Fourier Transform (FT) of these PSFs

can be taken and the normalized absolute values are plotted. Per trace, the spacing of

peaks corresponds to the 4D gaps in baseline lengths. The FT of the sum of all PSFs

is plotted as a thick black line and represents the spatial frequency coverage for the

complete sets of baseline lengths as well as wavelengths.

The 11 PSFs wide source function is discretized on a 333-
points equidistant grid. This leaves 33 resolution elements per
PSF, matching to the ratio Bin,max/D = 32, since the separa-
tion of the telescopes dictates the ultimate resolution, not the
gridsize for the reconstruction of L̂(θin). Therefore, all features
in the function L(θin) are recoverable, leading to reconstruc-
tion error ε-values that are only limited by shot-noise. A full
description of the estimation process of L̂(θin) is described in
an earlier publication [6].

Table 2 provides a list of the detector discretizations, needed
for the four different imagers, in order to cover the FOV and
reach the same angular frequency coverage.

HomotheticDensifiedMichelsonStaircase

Detector size FOV FOV FOV FOV
Pixel size pθ(Bin,max)

4
pθ(Bout)

4
pθ(D)

2
pθ(D)

2
Number of pixels 1562 101 20 20
Scanning range — Λ β 2lcoh
Delay stepsize — 10λc λc/4 λc/4
Number of steps 1 36 1561 25
Bins total 1562 3636 31220 500

TABLE 2 Discretization of the (θout, d) detection space for the simulations. Here,

Λ = −187λc . . . + 187λc and β = 2Bin,maxθ
(max)
in . The angular fringe period

in focus pθ is derived from the general intensity response function and equals

pθ(Bout) = λc/Bout. The discretization ensures that all high-frequent spatial in-

formation of the stellar source is presented through fringes in (θout, d)-space and can

be detected.

For the methods other than Densified, the discretization is
straightforward. The necessary range of delay steps for the
Densified case to have coherent information from all regions
of the sky, is derived from the modulation part of the intensity
point-source response for a general interferometer, given as

cos

[
πBout

λ

(
θout −

[
B(k)

in
Bout

θin

]
+

d
Bout

)]
= 1,

for θin = θ
(max)
in . (4)

The expression of Eq. (4) states that a bright fringe is necessary
at the boundary of the field-of-view. Since the observation is
polychromatic, this requirement is reduced to finding the de-
lay d, for which the central fringe appears in the center of the
diffraction envelope. This center is located at θout = θ

(max)
in , so

that Eq. (4) now reduces to

d = Boutθin

(
1−

B(k)
in

Bout

)
. (5)

With the given FOV of 11 PSFs wide, a combination base-
line length of Bout = 7 m and a maximum collection base-
line length of Bin = 112 m, Eq. (4) yields a maximum delay
dmax = 1.5 mm, corresponding to 187 ·λc. The amount of steps
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to go through this delay-range is then chosen such that for ev-
ery direction θin, the corresponding intensity PSF shows an
envelope with clearly visible fringes. This amount is related
to the coherence length and can be found by inspection of the
calculated PSFs. Increasing the amount of steps leads eventu-
ally to a PSF with a central fringe in it, for every sky coordinate
θin. A very large number of steps will then be necessary. De-
creasing the amount of steps leads to regions of the sky for
which the PSF hardly shows fringes, since only for the values
of θin, matching to the delays d according to Eq. (5) the PSF
will show a central fringe in the center of the PSF. The 11 PSFs
wide sky is adequately covered with 36 steps of d, spanning
the −1.5 . . . + 1.5 mm range.

For the Staircase method, the number of stairs was chosen
to be equal to the number of pixels. The stair heights h0
are optimized for each baseline length. The stair height h0
might in practice also be chosen to be fixed when an actuat-
able staircase-shaped mirror is not feasible. The reduction of
the delay range in which fringed information is present still
applies, but is not optimal [8]. As a result of variable stair
heights, all fringes are present within a very short d-range. The
ultimate delay d at which the central fringe can be found, is a
function of the stair width and the baseline length—and is in
the h0-optimized case equal to the stair-height.

2 . 2 Q u a n t i t a t i v e c o m p a r i s o n

After the simulation process the estimate of the luminous in-
tensity distribution can be compared with the known lumi-
nous intensity distribution. For N resolution elements on the
sky, the normalized error in the estimate or the difference
norm ε is calculated:

ε =
1
N

√
∑

i
|si − ŝi|2. (6)

Where si is the intensity level of one resolution element in the
source and ŝi is the corresponding element in the estimate.
For the simulations, a non-existing stellar source is taken. The
source luminous intensity function L(θin) has a mean ampli-
tude equal to unity; a variable and realistic photon flux is re-
alized by adjusting the discretization of the measurement sig-
nals, rather than adjusting the source function. Therefore, the
source function can be normalized so that it has a mean value
of 1 and the estimate will also have an approximate mean
value of 1. If then the comparison of an estimate to the origi-
nal according to Eq. (6) yields an ε = 0.01, this means that the
dynamic range in the reconstruction is 1 :100.

Another reason to support the use of 1/ε as measure for dy-
namic range is the following. The dynamic range is the ratio
of the intensity resolution in the image, compared to the max-
imum value. Since the power in the original luminous inten-
sity function L(θin) is normalized to 1, the amplitude in the
Fourier spectrum F [L(θin)](k) for k = 0 is 1. And since L(θin)
is positive, all other values in F [L(θin)](k) are smaller. And
indeed, a low resolution version of L(θin) will show a rough
envelope function resembling L(θin), with a periodic cosine-
like oscillation around that envelope. The amplitude of that
periodic function is related to the largest Fourier amplitude
that was left out. Leaving out higher spatial frequencies either

because a limited Bin,max is taken or because too much filter-
ing is needed in case of a photon-starved observation, results
in a higher value of ε. And indeed, following the definition
of dynamic range, short baseline observations or observations
with a lot of (photon-)noise in it, will result in a low dynamic
range 1/ε.

3 R E S U L T S

3 . 1 C o m p a r i s o n o f t h e t r a n s f e r
m a t r i c e s

The transfer matrices for the four methods can be composed
and analyzed with Singular Value Decomposition [6]–[8]. The
use of the SVD is presented in these publications. It decom-
poses the imaging process into a set of nearly orthogonal ba-
sis vectors vi, of which an estimate is constructed. These basis
vectors directly relate to physical parameters in the imaging
process. The series of singular values σi are plotted in Figure 6,
where each series is normalized by its largest singular value,
σ1.

50 100 150 200 250 300

10
-2

10
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10
0

Singular Value index [-]

σ i/σ
1

 [-
]

Michelson
Staircase
Homothetic
Densified

FIG. 6 The singular values σi are normalized with respect to the largest singular value

σ1. This allows comparison of the responsiveness of the imaging method with respect

to spatial frequencies in the observed luminous intensity function L(θin). The graphs

show an incoherent imaging regime, for indices i ≤ 20, and a coherent imaging

regime, for indices 20 < i ≤ 333. There is no unsampled regime, because of the very

long baseline lengths.

Inspection of the plots provides information as described, in
detail, below.

Up to index i = 20, the singular values drop heavily. By
inspecting the singular vectors vi for these indices one con-
cludes that these modes correspond to the incoherent regime.
With a resolution, governed by telescope diameter D, the flux
is addressed to the 11 PSFs wide sky. Apparently, a set of
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' 11x2 SVD modes is sufficient for this task. The co-axial
imagers have 20 pixels on the detector, but the image-plane
methods have much more. In the coherent regime, for which
20 < i ≤ 333, the average level of the slowly decreasing lines
is a measure for the amount of coherent information in the
detection signals. Homothesis and Staircase both have fringe
information in all regions of every snapshot they record,
whereas Densified and Michelson record large amounts of in-
coherent intensity data per snapshot. This is a direct result of
the non-zero bandwidth in use and the resulting finite coher-
ence length. However, not only the average level of the curves
is related to quality. The ‘flatness’ of the traces is a measure
for the coverage of the field at all spatial frequencies. The flat-
ness of Homothesis and Michelson is better than that of Stair-
case and Densified. Apparently, for a certain spatial frequency,
not every direction θin is represented with equal strength. In
other words, these two non-classical methods have a field-
variant response, changing with the spatial frequency. How-
ever, this does not mean that all information of L(θin) cannot
be restored. For the Staircase method, an analysis of the slight
inefficiency as compared to co-axial Michelson is presented
in Appendix A. For the Densified method, the reason for the
slight inefficiency lies in the fact that only a limited set of val-
ues of d is taken per baseline configuration, and that the fringe
packet moves out of the diffraction envelope.

The analysis of the transfer matrices by inspection of their sin-
gular values, can be done before starting simulation runs for
each method. Facts such as complete coverage of field at all
spatial frequencies, and a correct number of singular values
related to the incoherent image, can be checked. The simu-
lations can then be started with transfer matrices that match
the desired imaging parameters, such as field and resolution.
But even without simulations, the curves in Figure 6 already
predict which imaging method will perform best. The method
that demonstrates in its σi/σ1-trace

I a limited drop of magnitude between the incoherent
and the coherent regime,

I an as limited as possible decrease of magnitudes in the
coherent regime, and

I a coherent regime continuing until index i, where i is
equal to the number of resolution elements in the func-
tion L(θin),

is stated to be the best performing imaging method. The nu-
merical simulations, incorporating detector-noise and shot-
noise, should prove this statement.

3 . 2 C o m p a r i s o n o f s i m u l a t e d o b -
s e r v a t i o n s

Figures 7 and 8 represent the results of 100 simulations.
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the data, for displaying purposes only. In the inserts, three homothetic reconstruc-

tions are presented, obtained with respectively 6, 57 and 210 photons per bin (see
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at the proper average level results in a misfit of ε = 10−1.67. Above the level of 210

photons per bin, only the very small features in L(θin) are still to be recovered. For

this reconstruction, the misfit is ε = 10−2.22 and the dynamic range is 1/ε = 167.

The less-steep region around ε = 10−2 indicates the transition from incoherent to

coherent imaging.
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FIG. 8 The normalized reconstruction error ε versus the total amount of received pho-

tons for the complete observation of L(θin). The huge amount of bins in the Michelson

case causes that curve to deviate from the others. Polynomials are fit through the data,

for displaying purposes only.

06020- 6



Journal of the European Optical Society - Rapid Publications 1, 06020 (2006) C. van der Avoort, et. al.

The four imaging methods are applied to the same source
L(θin), from which an increasing number of photons is re-
ceived. Figure 7 displays the imaging efficiency, expressed as
the reconstruction error ε, for the best reconstruction possible,
versus the number of photons per bin (being a tile in (θout, d)-
space). Detector noise is again 8 photons per bin. Above this
amount of photons per bin, all imaging methods demonstrate
a drop in reconstruction error; this marks the point where sig-
nificant imaging starts, be it that the reconstructions will have
a resolution comparable to that of incoherent or single-dish
imaging. The region around ε = 10−2 demonstrates the tran-
sition to coherent imaging. Sufficient photons available cause
the fringes in the detected signal to be distincted from the in-
coherent envelope function. For more than 103 photons per
bin, the interferometric imaging efficiency related to the four
beam combination schemes comes visible. The methods Ho-
mothesis and Michelson—the two classical methods—have
a comparable efficiency and perform better in terms of effi-
ciency than the methods Densified and Staircase. The reasons
for this lie in the large amount of incoherent information and
the use of multiplexing, respectively.

The amount of incoherent information in the detected signals
is larger for Densified as compared to Homothesis. Because of
field-dependent internal path length compensation, the fringe
packet ‘drifts’ out of the incoherent envelope function for Den-
sified. As explained, this is overcome by imaging the sky at the
same baseline configuration several times with changing the
delay d. Each recording contains fringed data for one certain
region of the sky, but adds incoherent data for the other re-
gions of the sky. The total collected information per baseline
length contains a large amount of incoherent data, resulting
in a low efficiency. A likewise problem related to the loss of
fringes because of the finite coherence length is found in the
co-axial imagers. The Staircase imager compensates the exter-
nal field-dependent path length in a discrete way, effectively
resulting in fringed response signals for the entire field, within
a reduced range of delay d. For this case, however, the lower
efficiency lies not in the fact that more incoherent informa-
tion is recorded; as much as all recorded information will be
fringed. The elementary response signals Ik(θout, d) consist of
an Airy-like envelope in direction θout and a modulation sig-
nal in direction d constituted from a constant value and a poly-
chromatic fringe function of a length related to the coherence
length. The response of the sky can be considered to be mul-
tiplexed in d-direction, because of the staircase-shaped field-
dependent compensation. The width of the response func-
tions in direction θout, being at least two pixels on the detector,
together with the fact that no positivity constraint is present
in the estimation process of a reconstruction of the sky, cause
a non-uniqueness of detector response ensembles to intensity
distributions on the sky. Hence, a lower efficiency in terms of
reconstruction error versus photons per bin results.

Figure 8 finally, shows the performance of the four imaging
methods as a function of observation time. Whether the best
reconstruction is sought for a given observation time, or the
shortest observation time is sought provided a minimum re-
construction quality, the outcome will be the same. The curves
essentially are horizontally shifted versions of those in Fig-
ure 7. Here one can see that the best imaging method is

Homothesis, followed by the Staircase method. For a given
amount of photons or observation time, these beam combin-
ers for an equal set of telescopes provide reconstructions of
the wide-field source containing the most features.

4 D I S C U S S I O N A N D C O N C L U -
S I O N S

Based on the equal treatment of the signals each interferome-
ter provides and the resulting figures of reconstruction quality
versus the number of photons received, we conclude that Ho-
mothesis is the superior imaging method for wide-field, high
angular resolution images. Not surprisingly, it is this method
that resembles most the ideal situation of a very large tele-
scope with an aperture mask in front of it. However, the con-
struction and operation of a homothetic imaging array are
no trivial issues, as described in the literature [17, 18]. The
Staircase method achieves storage of high resolution informa-
tion from the sky into a minimal number of detector bins—
with only 500 bins, it has by far the smallest amount. Al-
though the reconstruction process suffers slightly from this
data-compaction by multiplexing, the Staircase method per-
forms very well in the sense that it is fast, or, in other words,
that it needs less photons to reconstruct an image than Michel-
son or Densified. As in the case of Homothesis, there are prac-
tical issues to overcome. A staircase-shaped mirror with a cer-
tain number of aligned facets can be produced [12]. But then,
either an actuatable version with tuneable stair-height has to
be designed, or a system should be installed that can replace a
rigid staircase mirror for each of the k observations with base-
line lengths B(k)

in , in order to match the stair height h0 to the
baseline length.

Considering the merit of the analysis of the transfer matrices,
the conclusion can be drawn that inspection of the singular
values is a quick and accurate means to predict the imaging
performance of an interferometer. The superiority of Homoth-
esis, followed by the Staircase method, seen in the singular
value plot is in accordance with the final simulation results
where the simulated detection process and final reconstruc-
tion identify the same two methods to perform best.

A A P P E N D I X : I N E F F I C I E N C Y O F
S T A I R C A S E R E S P O N S E F U N C -
T I O N S

Besides the loss of light due to the presence of staircase dis-
continuities or edges in the intermediate focal plane, there is
also a signal processing-related ‘loss’ connected to the Stair-
case method. As described, the production of estimates L̂(θin)
is, in the case of Staircase imaging, slightly less efficient than
in the case of Michelson imaging. Despite the fact that the
Staircase compacts the fringed measurement signals, it needs
more photons per bin to obtain an estimate of equal fit to the
original. This inefficiency is illustrated in Figure 7, where the
Staircase curve is far above the Michelson curve, indicating a
worse reconstruction at an equal amount of photons per bin.
The inefficiency can be explained by the nature of the fringed
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signal. In the case of Staircase imaging, there is no unique re-
lation between the location and intensity of a point source on
the sky and the resulting single-point response function.

Following the staircase-induced staggered line in (θout, d)-
space for the origin location of the envelope and the fringes,
one can think of situations where the integrated response sig-
nal in a pixel, as function of d, is the same, while a different
L(θin) caused these responses. Figure 9 illustrates such a situ-
ation, based on the fact that negative contributions (L(θin) < 0)
to a response are, in principle, allowed.

q
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q
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q
in

Michelson Staircase Staircase

d

q
out

q
out

q
out

d d

L(q  )
in

(a) (b) (c)

FIG. 9 Three elementary source functions L(θin) are depicted. The detector responses

in (θout, d)-space are given, at a certain baseline B(k)
in . The steepness of the diagonal

line relates to B(k)
in ; the center of a point source response from direction θin ends up

centered around (θout, d) = (Mθin, B(k)
in θin). The response in the Michelson case (a)

uniquely matches to the given source function. Since in the case of Staircase imaging

the fringe data is compacted, the two sketched responses in (b) and (c) provide after

integration over a pixel the same intensity signal Ijk(d), but a totally different—yet

allowed—source function L(θin).

In the sketched situation, the combination of a large and pos-
itive response with a small and negative response yields the
same measurement as the combination of a single, smaller,
positive response. Due to the fact that different source func-
tions L(θin) can lead to the same or nearly the same measure-
ment, the Staircase method will need more information to be
able to give a correct estimate of the sky. Therefore, given the
same set of baseline lengths as the Michelson case, it will per-
form worse, as is indicated by the singular values in Figure 6,
where the normalized singular values of the Staircase imager
show a steeper drop-off, and is confirmed by the numerical
simulations, where the plot of the reconstruction error versus
the number of photons per bin (referred to as the imaging ef-
ficiency) shows that the Staircase imager needs more photons
per bin (or less noise) to reconstruct an image as well as the
Michelson imager does.
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