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1 I n t r o d u c t i o n

The temporal Talbot effect allows regenerating a periodic
pulse train, which is launched into dispersive single-mode op-
tical fibers [1]–[3], chirped fiber gratings [4], and multimode
optical fibers [5].

This temporal regeneration effect also finds useful applica-
tions for suppressing dispersion effects in pulsed fiber lasers
[6], or for tailoring the repetion rate and the duty cycle of lin-
early chirped signals [7].

However, despite its usefulness, the temporal Talbot effect
strongly depends on the source linewidth [8, 9]. Hence,
one is tempted to assume that the temporal Talbot effect
can only be implemented with spectrally narrow sources.
Here we consider certain multi-wavelength optical sources,
which are of interest in time-resolved spectroscopy, opti-
cal component characterization, and in wavelength-division-
multiplexed WDM communications. These sources can be im-
plemented either as an array of distributed-feedback (DFB)
laser diodes (LDs) or by means of a single laser emitting si-
multaneously at different wavelengths [10, 11].

Our aim is to present an optical method that uses a spec-
trally incoherent optical source, which is periodically mod-
ulated in intensity by means of an external modulator (EM),
e.g., electroabsorption or electrooptic, for implementing tem-
poral regeneration of periodic pulse trains in a linear disper-
sive medium. In the framework of the space-time analogy, our
proposal can be thought of as the temporal counterpart of the
Lau effect [12], or the noncoherent Talbot effect [13].

To our end, in section 2, we identify certain multi-wavelength
power spectra. In section 3 we show that, in a group-delay-
dispersion (GDD) circuit, the novel power spectrum sustains
the polychromatic temporal Talbot effect provided that a fre-
quency condition is satisfied. In section 4, we discuss the in-
fluence of a mismatch in the frequency condition. And in sec-
tion 5, we summarize our proposal.

2 M U L T I - W A V E L E N G T H S O U R C E S

We propose to use the following spectrally incoherent optical
source. Its power spectrum is composed by (2M+1) narrow
spectral lines.

FIG. 1 Schematic diagram of the proposed optical setup. For this picture we assume a

Gaussian-modulated spectrum for the multi-wavelength optical source and a Gaussian-

type modulating signal.
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Each spectral line is located at ω = ω0 + mΩS, where ω0is the
source central angular frequency,m is an integer number, and
ΩS is an angular frequency to be specified in what follows. As
is depicted in Figure 1, if the spectral lines are symmetrically
located around ω0, then the normalized source power spec-
trum is

S (ω) =
+M

∑
m=−M

Smδ (ω − ω0 − mΩS) . (1)

In Eq.(1) Smdenotes the spectral intensity of the m-th spec-
tral channel. We assume that the dispersion relation can be
approximated with a Taylor series expansion, around ω0, for
any frequency ω within the interval (ω0 − MΩS, ω0 + MΩS).
This assumption is further discussed in the next section.

We consider that the spectrally incoherent source is modu-
lated by an EM, which is driven with a periodic RF signal.
In this way, at the input of the optical fiber, the slowly varying
complex-amplitude envelope is represented by the Fourier se-
ries

g (t) =
+∞

∑
n=−∞

an exp [inΩt]. (2)

where we denote as Ω = 2π/T the angular frequency of the
driving signal and, of course, of the pulse train. The Fourier
spectrum of the slowly varying complex-amplitude envelope
is

G (ω) =
+∞

∑
n=−∞

an δ (ω − nΩ). (3)

The above signal is then propagated through a GDD circuit.
From now on, and with no lack of generality, we assume the
GDD circuit is implemented by means of single-mode optical
fiber.

3 M U L T I - W A V E L E N G T H P E R I -
O D I C P U L S E P R O P A G A T I O N

Following the method adopted by Wang [14], the field prop-
agation a distance z along fiber is described through the con-
volution integral

R (t, z, ω) =
+∞∫
−∞

G(ω′ − ω) exp
[
iβ (ω) z − iω′t

]
dω′ =

exp (−iωt)
+∞

∑
n=−∞

{an exp [iβ (ω − nΩ) z]} exp (inΩt) . (4)

In Eq.(4) we denote as β (ω) the dispersion relation. We con-
sider that, at the output of the fiber, the detected output signal
is proportional to the ensemble average of the square modulus
of the slowly varying envelope. That is,

I (t, z) = (1/2π)
+∞∫
−∞

S(ω) |R (t, z, ω)|2 dω. (5)

By substituting Eq.(1) in Eq. (5) we have that

I (t, z) = (1/2π)
+M

∑
m=−M

Sm |R (t, z, ω0 + mΩS)|2. (6)

Furthermore by substituting Eq.(4) in Eq.(6) we obtain

I (t, z) = (1/2π)
+M

∑
m=−M

Sm

+∞

∑
p=−∞

+∞

∑
q=−∞

apa∗q exp [i (p − q) Ωt]×

exp [iβ (ω0 + mΩS − pΩ) z − iβ (ω0 + mΩS − qΩ) z] . (7)

It is convenient to rewrite Eq.(7), in terms of a new integer
variable n = p − q, as

I (t, z) = (1/2π)
+M

∑
m=−M

Sm

+∞

∑
n=−∞

+∞

∑
q=−∞

an+qa∗q exp [inΩt]× (8)

exp [iβ (ω0 + mΩS − qΩ − nΩ) z − iβ (ω0 + mΩS − qΩ) z] .

Next, we state the assumptions made for approximating the
dispersion relation as the following Taylor series expansion

β (ω) = β0 + β1 (ω − ω0) +
β2

2
(ω − ω0)

2 , (9)

where βn = (d/dω)n β (ω), at ω = ω0. For a typical opti-
cal fiber operating at the third telecommunications window
(λ0=1.55µm), β2 = −21.6ps2/km and the third-order disper-
sion (TOD) coefficient is β3 =0.127ps3/km. This means that
the maximum bandwidth of the optical source, 2MΩS, must
be kept much lower than80 THz to ensure negligible effect
from the TOD term in the Taylor expansion. From a practi-
cal point of view, for a 100 channel WDM network, the above
condition is satisfied for a spectral spacing of ΩS=0.8 THz
(∆λ=6.4nm).

From Eqs.(8) and (9) we have that

I (τ, z) = (1/2π)
+M

∑
m=−M

Sm

+∞

∑
n=−∞

+∞

∑
q=−∞

an+qa∗q×

exp [inΩ (τ − β1z)] exp
[

i
(

2m
ΩS
Ω

+ 2q + n
)

nβ2Ω2z
2

]
. (10)

In the first-order dispersion regime, we note that for achieving
temporal Talbot effect (neither dispersion, nor shifts) the dis-
tance z should be a multiple integer number of the so-called
Talbot distance, zT = 4π/β2Ω2. At multiples of this distance,
say at z = LzT with L=1,2,3. . . , and using the proper time,
τ = t − β1z, Eq.(10) reduces to

I (τ, LzT) = (1/2π)
+∞

∑
n=−∞

+∞

∑
q=−∞

an+qa∗q× (11)

+M

∑
m=−M

Sm exp
[

i2πLn
(

τ

T
+ m

ΩS
Ω

)]
.

Or equivalently, from |g (t)|2 in Eq.(2),

I (τ, LzT) = (1/2π)
+M

∑
m=−M

Sm

∣∣∣∣g (
τ + LmT

ΩS
Ω

)∣∣∣∣2
. (12)

It is apparent from Eq.(12) that the output signal for a fiber
length corresponding to a multiple of the Talbot distance
corresponds to a set of multiple weighted and shifted self-
images of the intensity driving signal |g (t)|2. Furthermore,
the amount of shift is different for each channel. This fact pre-
vents in general from obtaining temporal regeneration of the
input signal when a multi-wavelength optical source is em-
ployed.

However, here we show that there is a constant time delay
∆τ = L (ΩS/Ω) T between successive channels. In this way,
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we claim that it is possible to implement the temporal Talbot
effect with a multi-wavelength optical source if ∆τ is set to a
multiple of the driving period T. In mathematical terms, and
for the first self-image distance L=1, the following frequency
condition must be satisfied

ΩS = QΩ, (13)

where Q is an integer number. The condition in Eq.(13) is de-
noted as the temporal Lau condition. We note, for the first
time, that this condition is the temporal analogue of the con-
sonance condition required in the spatial domain to achieve
high-contrast Lau fringes, with an extended spatially incoher-
ent optical source [12, 13]. The role of the periodic input source
in the spatial domain is here played by the multi-wavelength
optical source. Note that the frequency detuning ΩS is the
temporal counterpart of the spatial period of the incoherent
source in the Lau experiment.

Next, we consider the feasibility of the practical implemen-
tation. To our goal, we assume a WDM scheme at the third
telecommunications window where the multi-wavelength
source is implemented by means of an array of continuous
wave DFB lasers. We assume a channel spacing fs = Ωs/2π =
100GHz, ∆λ = 0.805nm, and, for the analysis, we consider
a 10 channel scheme. In accordance with Eq.(13), the non-
coherent temporal self-image at the first self-image distance,
L=1, will be achieved whenever the driving signal is set to
f = Ω/2π = (100/Q) GHz. For Q = 10, this corresponds to a
feasible 10 GHz RF signal. Note the frequency signal require-
ment can be reduced either by choosing a higher value for the
integer Q or lower channel spacing as in a DWDM scheme.

4 M I S M A T C H I N T H E L A U C O N D I -
T I O N

Finally, we discuss the impact of some mismatch in the tem-
poral Lau condition. That is

ΩS = (Q + ε) Ω , (14)

where ε is a real positive number, such that 0 < ε < 1. Using
the previous formulation, it is straightforward to obtain that
the output irradiance is now

I (τ, LzT) = (1/2π)
+M

∑
m=−M

Sm |g (τ + LmεT)|2 =

(1/2π)
+∞

∑
n=−∞

cn exp [inΩτ]
+M

∑
m=−M

Sm exp [i2πLmnε] . (15)

where cndenotes the autocorrelation coefficient of the Fourier
components an.

It is apparent from Eq.(15) that a mismatch, in the temporal
Lau condition, generates a linear phase delay between the
Fourier components, which may be related to the discrete
Fourier transform of the source power spectrum. However,
this is beyond our present scope. Here we only analyze two
particular cases that illustrate the main features of our pro-
posal.

If we set L = 1, ε = 1/2 and the coefficients of the power spec-
trum are S0 = S1 and zero otherwise, then Eq.(15) becomes

I (τ, zT) = (S0/2π)
{
|g (τ)|2 + |g (τ + T/2)|2

}
. (16)

Hence, for a periodic, rectangular pulse train with duty cycle
equal to one half, c2n = 0, one has that

|g (τ + T/2)|2 = 1 − |g (τ)|2 . (17)

And thus, Eq.(16) predicts zero modulation at the output. That
is, I (τ, zT) = (S0/2π), the irradiance distribution is uniform.

In the second example, we consider that the coefficients of the
power spectrum have the same value, Sm = S0 = 1/ (2M + 1)
for any m. Then, Eq.(15) becomes

I (τ, zT) =
1

2π (2M + 1)

+M

∑
m=−M

|g (τ + LmεT)|2 . (18)

This irradiance profiles are shown in Figure 2 and Figure 3, for
a periodic pulse, with duty cycle equals to 1/4.

FIG. 2 Normalized irradiance variations, of the temporal Lau effect, with 3 spectral

lines. The mismatch, parameter, ε, varies from 0.1 to 0.9.

 

FIG. 3 Same as Figure 2, but for 11 spectral lines.

The parameter ε varies from 0.1 till 0.9. In Figure 2 the num-
ber of incoherent lines sources is 3 = 2M + 1, or M = 1;
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while in Figure 3 the number of incoherent lines sources is
11 = 2M + 1, or M = 5. We note that for this example, the visi-
bility of the irradiance distribution decreases as the parameter
ε increases.

5 C O N C L U S I O N S

Summarizing, we have shown that with a suitable multiwave-
length optical source, it is possible to implement the temporal
Talbot effect; here denoted as the temporal Lau effect. Then,
one can use a spectrally incoherent source for regenerating a
slow varying periodic pulse train, which is launched into a lin-
ear dispersive (lowest-dispersion-order) optical fiber. For first
time, we have identified the condition for implementing the
temporal Lau effect. And we have discussed the impact of a
mismatch in the Lau condition.
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