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Spectral properties of lamellar sub-wavelength gratings (nanogratings) are described by effective medium approximation (EMA). Analytical
spectral formulae for ordinary and extraordinary effective optical functions are derived for nanogratings consisting of material described by
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1 I n t r o d u c t i o n

Optical methods represented by reflection and transmission
spectroscopy, ellipsometry, and polarimetry became nowa-
days standards of process monitoring and quality control in
semiconductor technology. New trends in ultra large scale
integrated circuits require adaptation of optical methods for
nondestructive characterization and control of lithographic
and nanostructurization processes.

Successful implementation and sub-nanometer sensitivity of
optical methods are conditioned by their application in a wide
spectral range [1, 2]. The main advantage of spectral mea-
surement is fitting of data to an appropriate model consist-
ing of a few unknown parameters. Complex spectral optical
properties are described by model dielectric functions consis-
tent with microscopic mechanisms of spectral absorption and
fulfilling the Kramers-Kronig dispersion relations [3]. Conse-
quently, there is a need for detailed study of optical properties
of periodic gratings and nanosystems in spectral domain.

On the other hand, the sub-wavelength gratings behave as
effective media with artificial optical properties, which have
no analogy among natural materials. Symmetry reduction by
nanostructurization results in a strong form anisotropy and
gives possibility to apply nanogratings as polarizing devices.
Recently, a birefringent quarter wave plate [4], polarizing

beam-splitters [5], and other quasi-achromatic polarizing de-
vices designed from dielectric gratings [6] have been reported.
Detail understanding of device functionality requires knowl-
edge of spectral properties of such periodic systems.

Modeling of optical properties of gratings and periodic sys-
tems is usually based on generalization of the Berreman ma-
trix approach used for anisotropic multilayer systems [7]. For
laterally periodic systems the rigorous coupled wave analysis
(RCWA) applies truncated Fourier series expansions for de-
scription of the electromagnetic field in the structure [8, 9].
Compared to the multilayer models, the RCWA computing is
much more time consuming, which becomes a problem par-
ticularly for spectral modeling and fitting.

One from the approaches to simplify modeling of the sub-
wavelength gratings is to use the effective medium approx-
imation (EMA), which replaces grating by an effective layer
with new optical parameters. Effective parameters of isotropic
lamellar gratings were intensively studied in the single wave-
length context and optical constants of the effective layer in
quasi-static limit (ratio between the grating period Λ and the
incident light wavelength λ is close to zero) are very well
known [10].
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Expressions for the isotropic gratings and detailed study of
the validity of different EMA approaches were presented by
Haggens, Li, and Kostuk [11]. Moreover, the authors proposed
approach which is based on exact Bloch wave numbers and
provides very good description for dielectric gratings. The
case of metallic grating was shown to be more complicated
as the assumptions justifying EMA are broken generally for
much smaller values of Λ/λ. Necessity to obtain exact wave
numbers makes this solution rather precise, but unfortunately
time consuming.

That approach is principally different from original work of
Rytov [12], where approximate analytical formulae were ob-
tained directly from the Maxwell equations under the condi-
tion of normal incidence. The theory was generalized and pre-
cised later by Lalanne and Hugonin [13], where rather compli-
cated expressions are presented providing very precise values
of effective parameters. Recently, quasi-static expressions for
the generally anisotropic lamellar gratings were reported in
Ref. [14].

This paper deals with description of lamellar nanogratings
by spectral effective medium approximation. Simple analyt-
ical formulae in quasi-static limit are compared with rigorous
modeling based on RCWA. Our approach is demonstrated
on nanogratings consisting of typical representative materi-
als: a dielectric dispersive medium (SiO2), an absorbing mate-
rial with interband electronic transitions (Si), and a metal with
typical free electron absorption (Ag).

Basic theory and procedure to obtain effective parameters of
nanogratings is presented in Section 2. The quasi-static ap-
proximation of EMA is applied on elementary optical func-
tions in Section 3. Spectral origin of interesting birefringent
and dichroic properties of nanogratings is explained on ex-
ample of three basic optical functions: Sellmeier relation de-
scribing dispersion in non-absorbing spectral range, damped
harmonic oscillator describing absorption, and Drude model
for free electron absorption in metals. Section 4 deals with real
natural materials and the simple EMA is compared with rigor-
ous RCWA modeling. Limits and applicability of the approxi-
mation are discussed.

2 T H E O R Y

2 . 1 F o r m u l a t i o n o f t h e p r o b l e m

Figure 1 shows the geometry of the binary lamellar grating
and the coordinate system used in this article. Incident light
is assumed in the form of a monochromatic plane wave with
wave vector in the plane yz. For simplicity we restrict our de-
scription and modeling to gratings consisting of isotropic ma-
terials. Incident light is assumed in the form of a monochro-
matic plane wave with time dependence described by factor
exp(−iωt), where ω is the angular frequency. Wave vector is
chosen to be parallel to the plane yz.

According to the Floquet theorem, the electromagnetic field
in the periodic structure shown in Figure 1 can be described
using a periodic functions of the in-plane space coordinates.

Moreover, the electric and magnetic fields E and H in the grat-
ing can be expressed after suppressing time dependence in the
forms

E(r) = ∑
m

exp(ikm · r) ∑
n

AE
mnem exp(iny2π/Λ), (1a)

H(r) = ∑
m

exp(ikm · r) ∑
n

AH
mnhm exp(iny2π/Λ), (1b)

where km = [kx,m, ky,m, kz,m] denotes the Bloch wave vector
for given wavelength λ, AE

mn and AH
mn denote the amplitudes

of n-th Fourier harmonics of m-th Bloch wave. Vectors em and
hm denote the polarization vectors of m-th Bloch wave.
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FIG. 1 Structure with one-dimensional lamellar grating layer. In terms of the grating

period Λ, the fill factor is defined as f = a/Λ.

The Maxwell equations can be after suppressing periodic
time dependence (and assuming permeability has its vacuum
value) written in the normalized form

∇×H(r) = −ik0εR(r)E(r), (2a)

∇× E(r) = ik0H(r), (2b)

where εR(r) denotes the relative permittivity in the grating
layer and k0 = 2π/λ.

Eqs. (2a) and (2b) can be solved by the RCWA [8, 9], which
converts these equations into the eigenvalue problem result-
ing in the Bloch wave numbers kz,m and eigenvectors describ-
ing spatial dependence of Bloch waves in xy plane. Special
care should be taken with expressing permittivity tensor by
using truncated Fourier series as it significantly influences
precision of the results. At this stage of algorithm the bound-
ary conditions are included also in the representation of the
permittivity tensor. If Li factorization rules [15] are used for
lamellar grating, the zero order Bloch wave in nanograting
corresponds in first approximation to a plane wave with wave
number of the zero Fourier harmonic [14] (this wave num-
ber can be obtained by assuming expansion with only zero
Fourier harmonic – quasi-static limit).

For coupling the field in the incident medium and the sub-
strate, the boundary conditions are applied, which state that
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the tangential components of the electric and magnetic field
as well as normal components of electric displacement and
magnetic flux density have to be continuous on each inter-
face. Stable implementation of the boundary conditions is pro-
vided by S-matrix algorithm [16], which respects direction of
propagation of the Fourier harmonics. Numerically it means
to avoid propagation matrices containing simultaneously ex-
ponentially increasing and decreasing elements.

2 . 2 E f f e c t i v e m e d i u m a p p r o x i m a -
t i o n

Effective medium approximation is used in the cases if the
grating has period Λ much smaller then the wavelength of
the incident light Λ � λ. In the frame of this theory, the grat-
ing layer is replaced by an effective homogeneous anisotropic
layer, which describes optical properties of the original grat-
ing. Precision of this description depends on the Λ/λ ratio,
but also on the way the effective parameters are obtained.

In this article two types of description of the effective layer are
used:

(i) analytical EMA values for quasi-static cases (Λ/λ → 0)
and

(ii) EMA values obtained from fit of the rigorous RCWA
data (Λ/λ � 1).

In quasi-static limit, parameters of the layer can be expressed
in the simple form either for isotropic [11] or for anisotropic
gratings [14]. Nanogratings consisting of isotropic materials
ε(H) (lamellas) and ε(L) (inter-lamellar medium) are repre-
sented as uniaxial effective media described by the ordinary
and extraordinary effective permittivities εo and εe in the form
[11]:

εo = f ε(H) + (1− f )ε(L), εe =
ε(H)ε(L)

f ε(L) + (1− f )ε(H)
, (3)

where f = a/λ denotes the fill factor.

It is worthy to remark here that these expressions can be ob-
tained from matrix representing Fourier expansion of the per-
mittivity tensor, where the necessary condition is correct ap-
plication of the Li factorization rules. The reason for this sim-
ple relation is that zero-order TE and TM polarized Bloch
modes can be in quasi-static limit approximately described by
plane waves with wave numbers, which are directly related
to ordinary and extraordinary refractive indices. At the same
time, when factorization rules are applied in rigorous model-
ing, zero Fourier harmonics directly correspond to these Bloch
waves.

Beyond the quasi-static area there is still the possibility to
describe sub-wavelength gratings by using homogeneous
anisotropic layers. Despite that the simple analytical formulae
cannot be provided in some cases, there is still possibility to
obtain approximate expressions for effective parameters [11]-
[13]. Nevertheless, to avoid any inaccuracy by choosing ap-
proximate model, following procedure to fit the rigorous data
is used in this article.

Optical response of a grating described by Mueller matrices is
modeled by using the RCWA. Rigorous data for incidence an-
gles ranging from 0◦ to 80◦ with step of 5◦ are fitted by uniax-
ial effective medium. For spectral response we fit each wave-
length separately. The fitting approach allows to obtain infor-
mation of the quality of description of the nanograting by the
EMA and magnitude of dependence of the effective parame-
ters on the incidence angles. The information is obtained as an
error of the nonlinear fit by Levenberg–Marquardt method.

3 M O D E L I N G O F S P E C T R A L O P -
T I C A L F U N C T I O N S

This section deals with application of simple EMA [Eq. (3)]
to basic dispersion formulae describing wavelength or energy
dependence of the complex optical functions. The most repre-
sentative dispersion optical functions are Sellmeier, damped
harmonic oscillator (DHO), and Drude functions, which are
introduced and discussed.

3 . 1 S e l l m e i e r f o r m u l a

In visible spectra many dielectrics are non-absorbing and their
dispersion can be described by the Sellmeier optical functions
in the form:

ε(E) = ε0 +
AE2

1
E2

1 − E2
, (4)

where the constants ε0, A, and E1 represent the non-dispersive
term, the amplitude, and the energy of the absorption peak
outside the parametrized range, respectively.

Now let us consider a grating consisting of lamellas from di-
electric material ε(H) described using Sellmeier spectral de-
pendence (4) embedded in air ε(L)(E) = 1. The grating can
be represented using effective medium with ordinary and ex-
traordinary permittivities also in the Sellmeier form:

εo(E) = ε0,o +
AoE2

1,o

E2
1,o − E2

, εe(E) = ε0,e +
AeE2

1,e

E2
1,e − E2

, (5)

where constants εo, Ao, E1,o, εe, Ae, and E1,e can be found in
the second column of the Table 1. Therefore, sub-wavelength
gratings from Sellmeier material behave as uniaxial material
whose ordinary and extraordinary optical functions can be
described also by Sellmeier formulae with generally different
parameters, depending on the fill factor of the grating f .

Figure 2 shows an example of spectral dependence of effec-
tive optical functions of nanograting from a dielectric mate-
rial similar to SiO2. Chosen values of parameters are ε0 = 1,
A = 1.098, and E1 = 13.36 eV. Effective optical properties in-
reases with increasing fill factor f , which corresponds to effec-
tive mixture of grating material with air. Note that for extraor-
dinary permittivity also the resonant Sellmeier frequency E1,e
is shifted to higher energies, which corresponds to birefrin-
gence of dielectric nanogratings.

Figure 3 shows the birefringence ∆n = no − ne as a function
of the fill factor f . Ordinary and extraordinary refractive in-
dices can be obtained as the square roots of corresponding
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permittivities. One can see that ordinary permittivity is larger
for all fill factors than extraordinary, where the highest differ-
ence is around fill factor of 0.5. This behaviour is typical for
all sub-wavelength gratings from loss-less materials (not only
those described by Sellmeier formulae). Clearly for the limit-
ing cases f = 0 and f = 1 the effective medium is isotropic.
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FIG. 2 Modelled Sellmeier spectral dependencies of the ordinary (solid lines) and ex-

traordinary (dashed lines) permittivity on the light energy are shown for different fill

factors f . Material of lamellas is characterized by the parameters ε0 = 1, A = 1.098,

and E1 = 13.36 eV from Eq. (4).
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FIG. 3 Birefringence of nanograting ∆n = no − ne as a function of the fill factor f for

the energy 2 eV. Other parameters are the same as for Figure 2

3 . 2 D a m p e d h a r m o n i c o s c i l l a t o r

Another model very often used for description of broadened
absorption spectral line is the damped harmonic oscillator
(DHO). It often originates from interband electronic transi-
tions in visible and ultraviolet spectral range, or from reso-
nant vibration transitions in infrared region. Spectral dielec-
tric function of DHO is usually expressed in the form:

ε(E) = ε0 +
AE2

0
E2

0 − E2 − iΓE0E
, (6)

where A is the amplitude, E0 is the Lorentz resonant fre-
quency, and Γ is the broadening parameter of harmonic os-

cillator. Note that for negligible broadening Γ = 0, the DHO
optical response reduces to Sellmeier function (4).

Using EMA formulae from (3) with ε(H) from Eq. (6) and
ε(L)(E) = 1 leads to the following formulae for new DHOs:

εo(E) = ε0,o +
AoE2

0,o

E2
0,o − E2 − iΓoE0,oE

, (7a)

εe(E) = ε0,e +
AeE2

0,e

E2
0,e − E2 − iΓeE0,eE

, (7b)

Expressions for parameters ε0,o, Ao, E0,o, Γo, ε0,e, Ae, E0,e, and
Γe can be found in the third column of the Table 1.

Both, ordinary and extraordinary effective functions of DHO
are described in quasi-static limit also by the DHO functions.
As Figure 4 shows for parameters ε0 = 1, A = 3, E0 = 3 eV,
and Γ = 0.25, ordinary optical function only changes ampli-
tude with respect to the fill factor (linear combination of two
materials ε(H) and ε(L)). On the other hand, effects in the ex-
traordinary optical function are much more interesting. Peak
in the imaginary part is shifted to the higher energies, where
the shift and also amplitude depend on the fill factor. Due to
the Kramers-Kronig relations, also the real part of extraordi-
nary permittivity changes, following changes in the peak po-
sition.
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ε
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FIG. 4 Real ε1 and imaginary ε2 part of permittivity as dependence on spectral energy

for nanograting consisting of lamellas modelled using DHO optical function (6) with

parameters ε0 = 1, A = 3, E0 = 3 eV, and Γ = 0.25. Dashed and dash-dotted

lines correspond to the effective ordinary and extraordinary optical functions for the

fill factor f = 0.5, respectively.

The Lorentz resonant frequency E0,e as well as broadening pa-
rameter Γe are shown in Figure 5. Significant shift of the res-
onant frequency to higher energies for decreasing fill factor
is demonstrated. Products ΓoE0,o and ΓeE0,e are always con-
stant, which means that spectral broadening of peaks remain
constant for all fill factors for both ordinary and extraordinary
optical functions.
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FIG. 5 Dependence of the extraordinary optical function parameters E0,e and Γe on the

fill factor is shown. Other parameters are the same as for Figure 4.

3 . 3 D r u d e m o d e l
Metals and metallic compounds are characterized by strong
absorption in visible and infrared spectral range originating
from free-electron transitions. The optical functions of metals
are usually described using Drude model, which is a simplifi-
cation of previously introduced DHO model (E0 → 0). Drude
model is in ellipsometric community understood as being ba-
sic model describing fundamental properties of metals and its
optical function has the form:

ε(E) = ε0 +
A2

−E2 − iΓE
, (8)

where A is the plasma energy and Γ is the relaxation. Using
EMA formulae from (3) together with Eq. (8) leads to the ef-
fective optical functions in the form of Drude formula for the
ordinary and DHO for extraordinary case:

εo(E) = ε0,o +
A2

o
−E2 − iΓoE

, (9a)

εe(E) = ε0,e +
AeE2

0,e

E2
0,e − E2 − iΓeE0,eE

, (9b)

where the parameters ε0,o, Ao, Γo, ε0,e, Ae, E0,e, and Γe are sum-
marized in the fourth column of the Table 1. Figure 6 shows or-
dinary and extraordinary optical functions of effective grating
medium consisting of metallic lamellas described by Drude
spectral function and air ε(L)(E) = 1 for the fill factor f = 0.5.
Drude function is described by the chosen parameters ε0 = 1,
A = 5 eV, and Γ = 0.5 eV. Similarly as for DHO, the ordinary
optical function is rather simple linear combination of the two
materials.
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FIG. 6 Real ε1 and imaginary ε2 part of permittivity as dependence on the photon

energy for nanograting consisting of lamellas modelled using Drude optical function

(8) with parameters ε0 = 1, A = 5 eV, and Γ = 0.5 eV (solid lines). Dashed and

dash-dotted lines correspond to effective ordinary and extraordinary optical functions

for the fill factor f = 0.5, respectively.

Peculiar behavior was found for the extraordinary effective
optical function, that exhibits pure DHO behaviour (see Fig-
ure 6). As it is shown in Figure 7, a peak appears in the imagi-
nary part of the extraordinary optical function ε2,e and its po-
sition strongly depends on the fill factor. Figure 8 shows the
oscillator resonance energy E0,e dependence on the fill factor
f for extraordinary dielectric function. Maximal shift of DHO
resonance energy is obtained for f → 0 asymptotically ap-
proaching to E0,e,max = A/

√
ε0. Note that from Table 1 the

product ΓeE0,e = Γ is constant, which means that broadening
of the peak remain constant for all fill factors.
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FIG. 7 Imaginary parts of the effective extraordinary optical functions for chosen fill

factors for material (8) with parameters ε0 = 1, A = 5 eV, and Γ = 0.5 eV.

This interesting behaviour of the extraordinary effective opti-
cal function gives wide possibilities for applications of metal-
lic nanogratings. In the spectral range below 3 eV in Fig-
ure 6 the effective optical functions show strong dichroism.
For the ordinary wave, the effective nanograting is absorb-
ing as typical for metals. However, the extraordinary wave
is not absorbed and nanograting behaves as dielectric-, or
semiconductor-like material. Such properties of metallic grat-
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ings are already used in infrared polarimetry and ellipsometry
for polarizer applications.
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FIG. 8 Dependence of the oscillator energy of the effective extraordinary optical func-

tion E0,e on the fill factor (ε0 = 1, A = 5 eV, and Γ = 0.5 eV).

Sellmeier (5) DHO (7) Drude (9)

Ao A f A f A
√

f
E1,o E1 – –
ε0,o f ε0 + (1− f ) f ε0 + (1− f ) f ε0 + (1− f )
E0,o – E0 –
Γo – Γ Γ

Ae A f /(εe,1εe,2) A f /(εe,1εe,2) f /[(1− f )εe,1]
E1,e E1

√
εe,2/εe,1 – –

ε0,e ε0/εe,1 ε0/εe,1 ε0/εe,1
E0,e – E0

√
εe,2/εe,1 A

√
(1− f )/εe,1

Γe – Γ
√

εe,1/εe,2 Γ
√

εe,1/[(1− f )A2]

εe,1 = f + (1− f )ε0, εe,2 = f + (1− f )(A + ε0)

TABLE 1 Parameters of effective spectral optical functions.

4 C O M P A R I S O N O F T H E E M A
W I T H R I G O R O U S F I T S

In the previous section, properties of nanogratings consist-
ing of material described by pure ideal spectral functions
were discussed. However, optical functions of natural mate-
rials are usually more complex. Often real materials have to
be parametrized using advanced models [17] or as a super-
position of several basic functions (Sellmeier, DHO, Drude).
Even in such cases the ordinary dielectric function can be eas-
ily described. However, the extraordinary dielectric function
can not be obtain in an analytically closed form.

Simple quasi-static model of EMA given by Eq. (3) is com-
pared with the rigorous effective parameters. The rigorous
EMA parameters are obtained by fitting of the Mueller ma-
trix response from an effective layer to the rigorous RCWA
model of grating response. Mueller matrix data contain not
only information about amplitude of reflected light, but also
about phases. That increases sensitivity of the fit to the phase

changes and simulate real Mueller-matrix-polarimetry mea-
surements.

The Mueller matrix data are modeled using the RCWA with
totally 41 Fourier harmonics (N=20). The precision of the data
is sufficient for all modeled cases (see Figure 9 for conver-
gence tests) as the error of the RCWA modeling of the relative
Mueller matrix elements is less then 10−4.

The relative Mueller matrix data for the incidence angles rang-
ing from 0◦ to 85◦ with step of 5◦ are simultaneously fitted to
the model. The merit function of the fit is described by

χ2 =
1

7k− n ∑
k

∑
i,j

1
σ2

( MR,ij,k

MR,11,k
−

ME,ij,k

ME,11,k

)2

, (10)

where the indices R and E denote the RCWA and rigorous
EMA model and k is the index over all incidence angles. The
value of σ = 0.001 was chosen as an estimate of experimental
errors, n denotes number of fitted parameters (two for loss-
less and four for absorbing cases). Division by the element
M11 leads to normalized Mueller matrix, which more corre-
sponds to real experiments, where information about the ab-
solute intensity is usually not available. Only seven non-zero
elements of Mueller matrix not including M11 are used for fit-
ting by the Levenberg-Marquadt algorithm, which also enable
to estimate the standard errors of obtained effective parame-
ters (shown in figures as error bars) [18].

The rigorous EMA and the simple quasi-static EMA are com-
pared and validity of this two approaches are discussed in-
cluding the direct influence of the ration λ/Λ on the precision
of description. Even for chosen constant grating period the ra-
tio is rapidly changing in the higher part of the photon energy
spectra.
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FIG. 9 Convergence of RCWA modeling is shown. Decadic logarithm of Mueller-matrix-

elements differences as a functions of number of positive Fourier harmonics in trun-

cated series. In the model we use N = 20, which much exceeds usual experimental

precision.

General optical properties of nanogratings are discussed on
examples of dielectric material (SiO2), semiconductor (sili-
con), and metal (silver).
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4 . 1 D i e l e c t r i c m a t e r i a l – S i O 2
In this subsection SiO2 was chosen as grating and substrate
material as it represent typical dielectric material. Data of the
optical function are taken from Palik handbook [19]. Chosen
fill factor is f = 0.5 and period of the grating is 20 nm. Thick-
ness of the grating layer is chosen to 200 nm.

Spectral dependence of the effective ordinary and extraordi-
nary optical functions are plotted in Figure 10. Observed good
correspondence between the EMA and fitted values for pho-
ton energies from 1 to 8 eV (Λ/λ < 0.13) together with the
small error bars show that the EMA is very good description
for the nanograting. In this range the effective optical func-
tions can be described by simple EMA formulae Eq. (3).

For higher photon energy than 8 eV, SiO2 becomes absorbing
and values of the EMA differ from the fit. This points out, that
we are approaching area far from the quasi-static limit. Nev-
ertheless, trend continues with small error bars clearly stating
that the grating can be still with good precision described as
uniaxial layer for energies below 9.5 eV (Λ/λ < 0.16), but
only with non-quasi-static effective values. Figure 11 shows
detail of the imaginary part of εo, εe. Increasing error bars cor-
responds to increased energy diffracted by higher order Bloch
modes.

The effect of instability of the fits due to the breaking of the ba-
sic EMA condition is observed for energies higher than 9.5 eV.
For given values of permittivity and period the grating is no
more describable by only one Bloch mode inside the grating.
The fits in the area over 10 eV are much worse and cannot be
improved in principle, as the higher order Bloch mode in the
grating has significant influence.
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FIG. 10 Effective ordinary and extraordinary optical functions of SiO2 grating depen-

dent on photon energy. Grating period is Λ = 20 nm and fill factor is f = 0.5. Real

and imaginary parts of the fitted and EMA values are plotted with corresponding error

bars. The ratios Λ/λ for corresponding photon energies are written on the top of the

graph.
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FIG. 11 Upper panel shows detail of Figure 10 for energy range from 8 to 10 eV. In-

creased error bars corresponds to the energy diffracted to higher order Bloch waves.

The lower panel shows sum of TM polarization transmissions of all higher Bloch waves

divided by transmission of zero Bloch wave on the interface between incident medium

and grating (values for TE polarization are about two orders smaller).

4 . 2 S e m i c o n d u c t o r m a t e r i a l – S i

This subsection deals with properties of nanograting com-
posed from silicon as a typical semiconductor material, for
which the interband absorption dominates in visible spectral
range.

Figure 12 shows strong difference between ordinary and ex-
traordinary effective optical functions.
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FIG. 12 Effective ordinary and extraordinary optical functions of Si grating as a function

of photon energy. Grating period is Λ = 20 nm and fill factor is f = 0.5. Ordinary and

extraordinary optical functions are plotted in the top and bottom figure, respectively.

Fitted values are plotted with corresponding error bars and compared with simple

EMA. The ratios Λ/λ for the corresponding photon energies are plotted on the top of

the graph.

The optical functions of Si were taken from Refs. [20, 21]. The
fill factor f = 0.5, the period Λ = 20 nm, and the thickness
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of the grating layer 200 nm were chosen. Despite the ordi-
nary permittivity copy absorption features, the extraordinary
one correspond rather to non-absorbing material. As a conse-
quence, strong dichroism is typical for visible and ultraviolet
spectral range for silicon nanograting.

For the photon energies up to 2.5 eV fits the good correspon-
dence between simple EMA and fitted values is observed.
With rapid increase of imaginary part of optical function of
SiO2 after 2.5 eV, the differences between the EMA and fit are
apparent. Nevertheless, the error bars of the fit remain small,
which shows that grating can be still described as effective
layer for the rest of showed spectrum, even over the differ-
ences between the fit and quasi-static values.

4 . 3 N o b l e m e t a l – A g

In this section silver was chosen as a nanograting material
to show effects described in subsection 3.3. Figure 13 shows
optical function of silver from Palik handbook [22] used for
following model. For the modeling, a 200 nm thick silver
nanograting with the period Λ = 20 nm, fill factor f = 0.5,
and with silver substrate was chosen.
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FIG. 13 Optical function of silver used for modeling (from data in [22]).

Figure 14 shows spectral dependence of the effective ordinary
and extraordinary functions. Fitted values plotted as solid
lines with the corresponding error bars are compared with
the quasi-static EMA values denoted by dashed lines. Both
approaches are in good correspondence up to energy of 3 eV
(Λ/λ < 0.05), where imaginary part of extraordinary optical
function ε2e starts to grow.

At the energy 3.7 eV, the ε2e surprisingly (but in correspon-
dence with previous section) exhibits a peak. This peak is of
DHO type as was stated before and its position and ampli-
tude is dependent on the fill factor. Strong dichroism can be
found almost at whole spectral range, where for the energies
E < 3 eV the absorption in ordinary direction is dominant and
for energies 3.5 eV < E < 3.8 eV absorption in the extraordi-
nary direction dominates. This property raises wide area of
applicability as was mentioned in previous section.

For higher energy than 4 eV (Λ/λ ≈ 0.07) the influence of
higher order Bloch modes is remarkable and failure of the
EMA can be noticed there (indicated by fast increase of the
errors of fit).
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FIG. 14 Effective ordinary and extraordinary optical functions of Ag grating dependent

on photon energy. Grating period is Λ = 20 nm and fill factor is f = 0.5. Real and

imaginary parts of the fitted and EMA values are plotted with corresponding error bars

in top and bottom figure, respectively.

5 C O N C L U S I O N S

In this article, the spectral dependence of effective parame-
ters of sub-wavelength lamellar grating from materials de-
scribed by common optical function, namely Sellmeier for-
mula, damped harmonic oscillator, and Drude formulae, was
studied. Analytical formulae (5), (7), and (9) describing be-
haviour of the effective ordinary and extraordinary permit-
tivities in spectral range were derived. Analysis of the imag-
inary part of extraordinary effective optical function showed
high energy shift of DHO absorption peak and also surprising
peak appearance for the Drude model.

Effective parameters of the nanogratings consisting of natu-
ral materials were obtained from simple EMA (in quasi-static
limit) and compared with fit of rigorous data in wide spec-
tral range. As the ratio Λ/λ is increasing, effective medium
approximation do not exactly describe optical response of
nanograting. This lead to dispersion of parameters over range
of the incidence angles, which can be characterized in the fit-
ting procedure by uncertainty of the fitted values. When the
uncertainties increase over certain value, the EMA cannot be
anymore used for precise description of sub-wavelength grat-
ings. This threshold value of Λ/λ is dependent on the permit-
tivity of the material, where higher permittivity leads to shift
to smaller values of the ratio Λ/λ.
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